The discrete beauty of local GUTs

Hans Peter Nilles

Physikalisches Institut

Universität Bonn

The discrete beauty of local grand unification, GUTs and Strings, MPI München, February 2010 - p. 1/33

Outline

- Bottom-up motivation for GUTs and
- \checkmark the fate of global U(1) symmetries

Outline

- Bottom-up motivation for GUTs and
- the fate of global U(1) symmetries

require a consistent UV-completion of the theory!

- string theory supplies
 - the concept of local grand unification
 - discrete symmetries
- moduli stabilization and Susy breakdown
 - gaugino condensation and uplifting
 - gravity and mirage mediation

GUT evidence

Experimental findings suggest the existence of two new scales of physics beyond the standard model

```
M_{\rm GUT} \sim 10^{16} {\rm GeV} and M_{\rm SUSY} \sim 10^3 {\rm GeV}:
```

GUT evidence

Experimental findings suggest the existence of two new scales of physics beyond the standard model

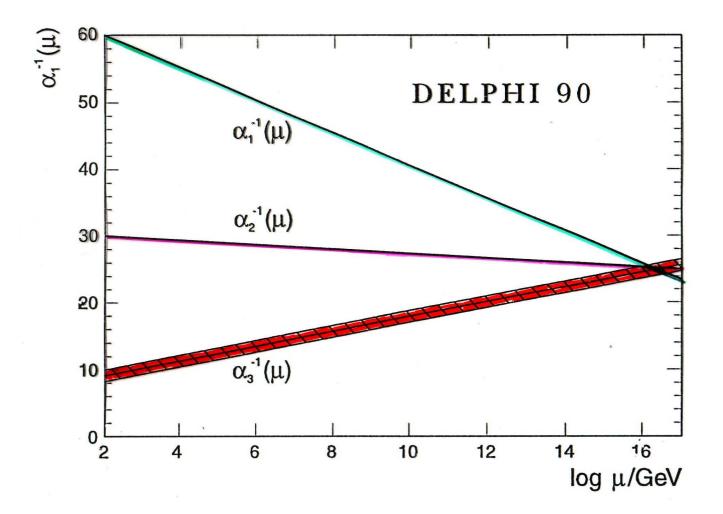
 $M_{\rm GUT} \sim 10^{16} {\rm GeV}$ and $M_{\rm SUSY} \sim 10^3 {\rm GeV}$:

Neutrino-oscillations and "See-Saw Mechanism"

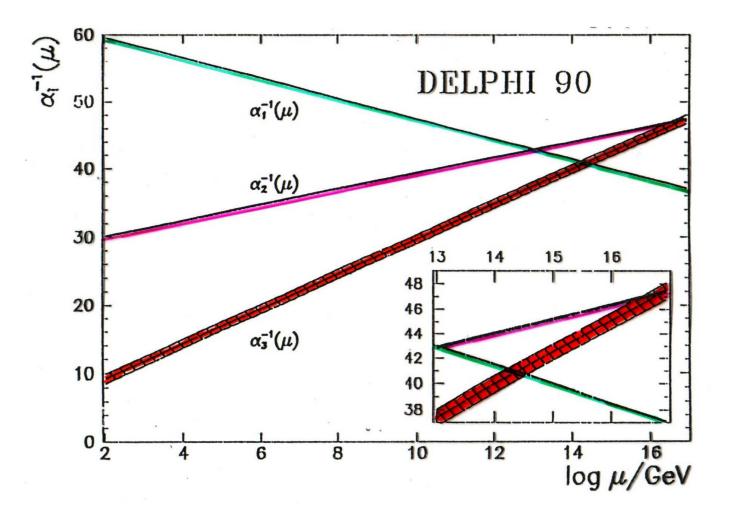
 $m_{
u} \sim M_W^2/M_{
m GUT}$ $m_{
u} \sim 10^{-3} {
m eV}$ for $M_W \sim 100 {
m GeV}$,

GUT evidence

Experimental findings suggest the existence of two new scales of physics beyond the standard model


 $M_{\rm GUT} \sim 10^{16} {\rm GeV}$ and $M_{\rm SUSY} \sim 10^3 {\rm GeV}$:

Neutrino-oscillations and "See-Saw Mechanism"


 $m_{
u} \sim M_W^2/M_{
m GUT}$ $m_{
u} \sim 10^{-3} {
m eV}$ for $M_W \sim 100 {
m GeV}$,

Evolution of couplings constants of the standard model towards higher energies.

MSusySM = MSSM

Standard Model

The fate of global symmetries

Global U(1) symmetries are very useful for

- absence of FCNC (solve flavour problem)
- Yukawa textures à la Frogatt-Nielsen
- solutions to the μ problem
- axions and the strong CP-problem
- R-symmetry and proton stability

The fate of global symmetries

Global U(1) symmetries are very useful for

- absence of FCNC (solve flavour problem)
- Yukawa textures à la Frogatt-Nielsen
- \checkmark solutions to the μ problem
- axions and the strong CP-problem
- R-symmetry and proton stability

But they might be destroyed by gravitational effects:

- we need a UV-completion
- with consistent incorporation of gravity

String theory as a UV-completion

What do we get from string theory?

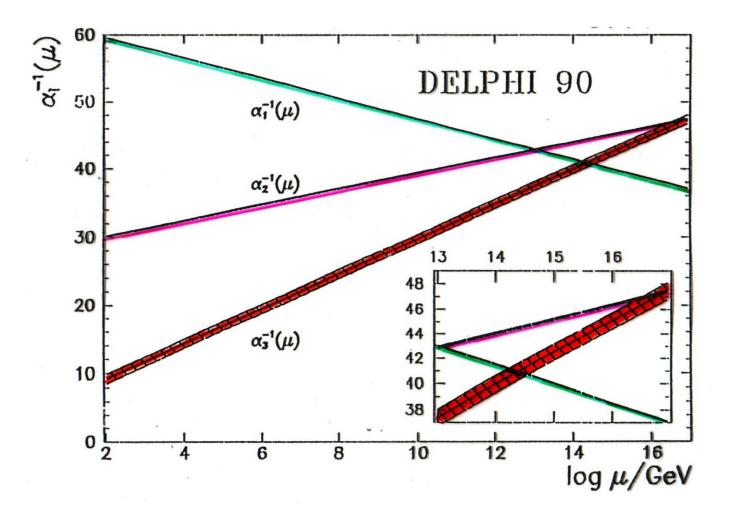
- supersymmetry
- extra spatial dimensions
- (large unified) gauge groups
- consistent theory of gravity
- many discrete symmetries

String theory as a UV-completion

What do we get from string theory?

- supersymmetry
- extra spatial dimensions
- (large unified) gauge groups
- consistent theory of gravity
- many discrete symmetries

String theory could serve as the UV-completion with a consistent incorporation of gravity,


but we need to make contact with the real world (MSSM).

Strings versus GUTs

There is some tension between GUTs and strings

- intersecting branes in type IIA,B
- F-theory

F-theory (cum grano salis)

Strings versus GUTs

There is some tension between GUTs and strings

- intersecting branes in type IIA,B
- F-theory
- heterotic string

Strings versus GUTs

There is some tension between GUTs and strings

- intersecting branes in type IIA,B
- F-theory
- heterotic string

There remain some corners that are compatible with

- a grand unified desert
- a variant of the GUT picture (local GUTs)
- consistent incorporation of MSSM

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2007)

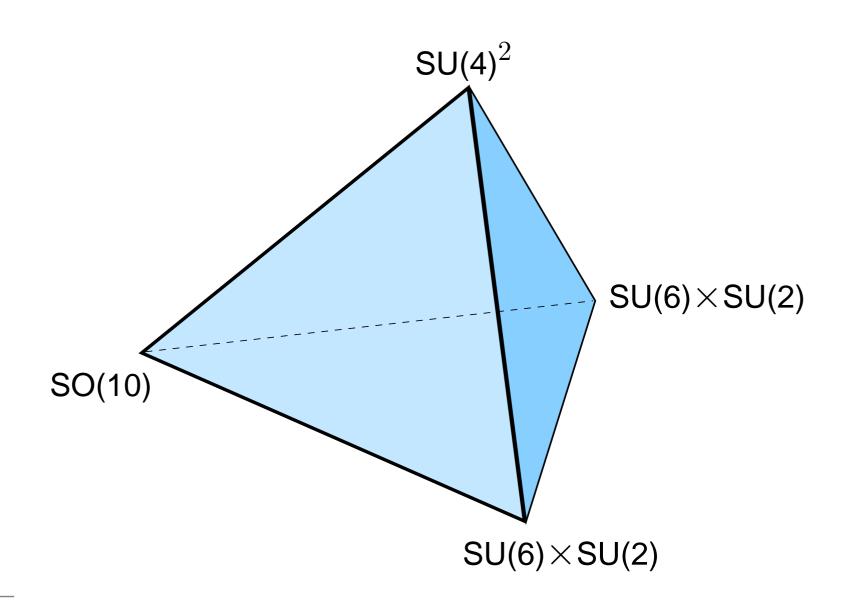
Local Grand Unification

In fact string theory gives us a variant of GUTs

- complete multiplets for fermion families
- split multiplets for gauge- and Higgs-bosons
- partial Yukawa unification

Local Grand Unification

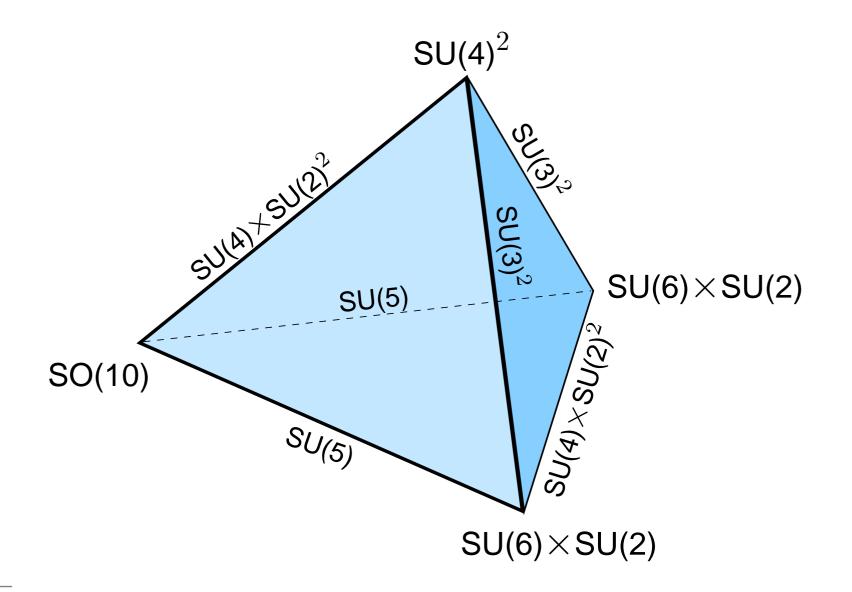
In fact string theory gives us a variant of GUTs


- complete multiplets for fermion families
- split multiplets for gauge- and Higgs-bosons
- partial Yukawa unification

Key properties of the theory depend on the geography of the fields in extra dimensions.

This geometrical set-up called local grand unification, can be realized in the framework of the "heterotic braneworld".

(Förste, HPN, Vaudrevange, Wingerter, 2004; Buchmüller, Hamaguchi, Lebedev, Ratz, 2004)


Localized gauge symmetries

(Förste, HPN, Vaudrevange, Wingerter, 2004)

The discrete beauty of local grand unification, GUTs and Strings, MPI München, February 2010 - p. 12/33

Standard Model Gauge Group

The Heterotic Braneworld

- 300 models with the exact spectrum of the MSSM (absence of chiral exotics)
 (Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2007-2009)
- Iocal grand unification (by construction)
- gauge- and (partial) Yukawa unification

(Raby, Wingerter, 2007)

examples of neutrino see-saw mechanism

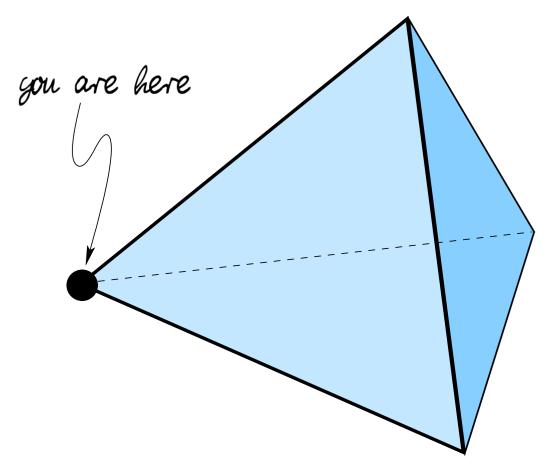
(Buchmüller, Hamguchi, Lebedev, Ramos-Sanchez, Ratz, 2007)

• models with R-parity + solution to the μ -problem

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2007)

gaugino condensation and mirage mediation

(Löwen, HPN, 2008)


Symmetries

String theory gives us

- gauge symmetries
- discrete global symmetries from geometry and stringy selection rules (Kobayashi, HPN, Plöger, Raby, Ratz, 2006)
- accidental global U(1) symmetries in the low energy effective action

(Choi, Kim, Kim, 2006; Choi, HPN, Ramos-Sanchez, Vaudrevange, 2008)

Location matters

Symmetries

String theory gives us

- gauge symmetries
- discrete global symmetries from geometry and stringy selection rules (Kobayashi, HPN, Plöger, Raby, Ratz, 2006)
- accidental global U(1) symmetries in the low energy effective action

(Choi, Kim, Kim, 2006; Choi, HPN, Ramos-Sanchez, Vaudrevange, 2008)

We might live close to a fixed point with enhanced symmetries that explain small parameters in the low energy effective theory.

The symmetries can be trusted as we are working within a consistent theory of gravity.

Applications of global symmetries

Applications of discrete and accidental global symmetries:

(nonabelian) family symmetries (and FCNC)

(Ko, Kobayashi, Park, Raby, 2007)

- Yukawa textures (via Frogatt-Nielsen mechanism)
- **•** a solution to the μ -problem

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2007)

creation of hierarchies

(Kappl, HPN, Ramos-Sanchez, Ratz, Schmidt-Hoberg, Vaudrevange, 2008)

proton stability via "Proton Hexality"

(Dreiner, Luhn, Thormeier, 2005; Förste, HPN, Ramos-Sanchez, Vaudrevange, 2010)

• approximate global U(1) for a QCD accion

(Choi, Kim, Kim, 2006; Choi, HPN, Ramos-Sanchez, Vaudrevange, 2008)

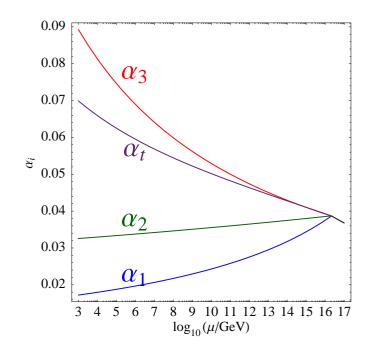
A Benchmark Model

At the orbifold point the gauge group is

$SU(3) \times SU(2) \times U(1)^9 \times SU(4) \times SU(2)$

- one U(1) is anomalous
- there are singlets and vectorlike exotics
- decoupling of exotics and breakdown of gauge group has been verified
- remaining gauge group

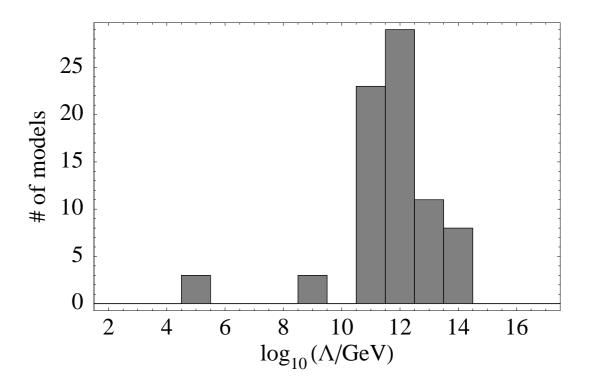
 $SU(3) \times SU(2) \times U(1)_Y \times SU(4)_{\text{hidden}}$


• for discussion of neutrinos and R-parity we keep also the $U(1)_{B-L}$ charges

Spectrum

#	irrep	label	#	irrep	label
3	$(3,2;1,1)_{(1/6,1/3)}$	q_i	3	$\left({\overline {f 3},{f 1};{f 1},{f 1}} ight)_{(-2/3,-1/3)}$	$ar{u}_i$
3	$({f 1},{f 1};{f 1},{f 1})_{(1,1)}$	$ar{e}_i$	8	$({f 1},{f 2};{f 1},{f 1})_{(0,*)}$	m_i
3 + 1	$(\overline{3},1;1,1)_{(1/3,-1/3)}$	$ar{d}_i$	1	$({f 3},{f 1};{f 1},{f 1})_{(-1/3,1/3)}$	d_i
3 + 1	$({f 1},{f 2};{f 1},{f 1})_{(-1/2,-1)}$	ℓ_i	1	$({f 1},{f 2};{f 1},{f 1})_{(1/2,1)}$	$ar{\ell}_i$
1	$({f 1,2;1,1})_{(-1/2,0)}$	h_d	1	$({f 1},{f 2};{f 1},{f 1})_{(1/2,0)}$	h_u
6	$ig({f \overline{3}},{f 1};{f 1},{f 1}ig)_{(1/3,2/3)}$	$ar{\delta}_i$	6	$(3,1;1,1)_{(-1/3,-2/3)}$	δ_i
14	$({f 1},{f 1};{f 1},{f 1})_{(1/2,*)}$	s_i^+	14	$({f 1},{f 1};{f 1},{f 1})_{(-1/2,*)}$	s_i^-
16	$({f 1},{f 1};{f 1},{f 1})_{(0,1)}$	\bar{n}_i	13	$({f 1},{f 1};{f 1},{f 1})_{(0,-1)}$	n_i
5	$({f 1},{f 1};{f 1},{f 2})_{(0,1)}$	$ar\eta_i$	5	$({f 1},{f 1};{f 1},{f 2})_{(0,-1)}$	η_i
10	$({f 1},{f 1};{f 1},{f 2})_{(0,0)}$	h_i	2	$({f 1},{f 2};{f 1},{f 2})_{(0,0)}$	y_i
6	$({f 1},{f 1};{f 4},{f 1})_{(0,*)}$	f_i	6	$ig(1,1;\overline{4},1ig)_{(0,*)}$	$ar{f}_i$
2	$({f 1},{f 1};{f 4},{f 1})_{(-1/2,-1)}$	f_i^-	2	$ig(1,1;\overline{4},1ig)_{(1/2,1)}$	\bar{f}_i^+
4	${f (1,1;1,1)}_{(0,\pm 2)}$	χ_i	32	$({f 1},{f 1};{f 1},{f 1})_{(0,0)}$	s^0_i
2	$ig(\overline{f 3},{f 1};{f 1},{f 1}ig)_{(-1/6,2/3)}$	$ar{v}_i$	2	$(3,1;1,1)_{(1/6,-2/3)}$	v_i

Unification


- Higgs doublets are in untwisted (U3) sector
- trilinear coupling to the top-quark allowed
- heavy top quark

- threshold corrections ("on third torus") allow unification at correct scale around 10¹⁶ GeV
- natural incorporation of gauge-Yukawa unification

(Hosteins, Kappl, Ratz, Schmidt-Hoberg, 2009)

Hidden Sector Gaugino Condensation

Gravitino mass $m_{3/2} = \Lambda^3 / M_{\text{Planck}}^2$ and $\Lambda \sim \exp(-S)$

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2006)

Dilaton (Modulus) Domination

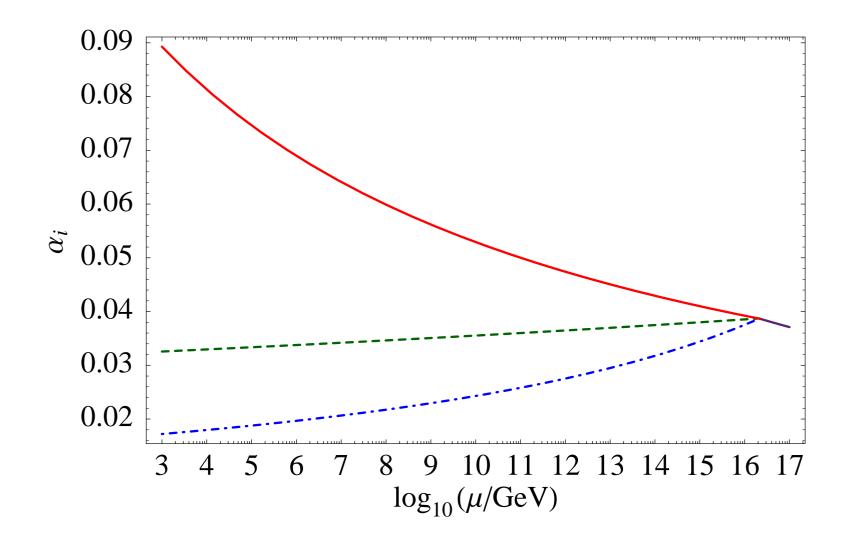
This leads to a variant the "gravity mediation" scenario,

but we still have to adjust the vacuum energy.

Here we need a "downlifting" mechanism:

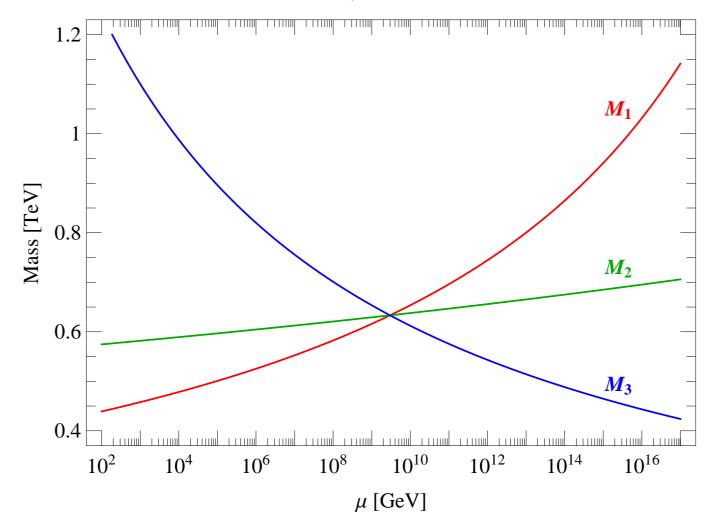
"downlifting" mechanism can fix S as well (no need for nonperturbative corrections to the Kähler potential)

(Löwen, HPN, 2008)


gives a suppression factor

 $\log(m_{3/2}/M_{\text{Planck}})$

(Choi, Falkowski, HPN, Olechowski, 2005)

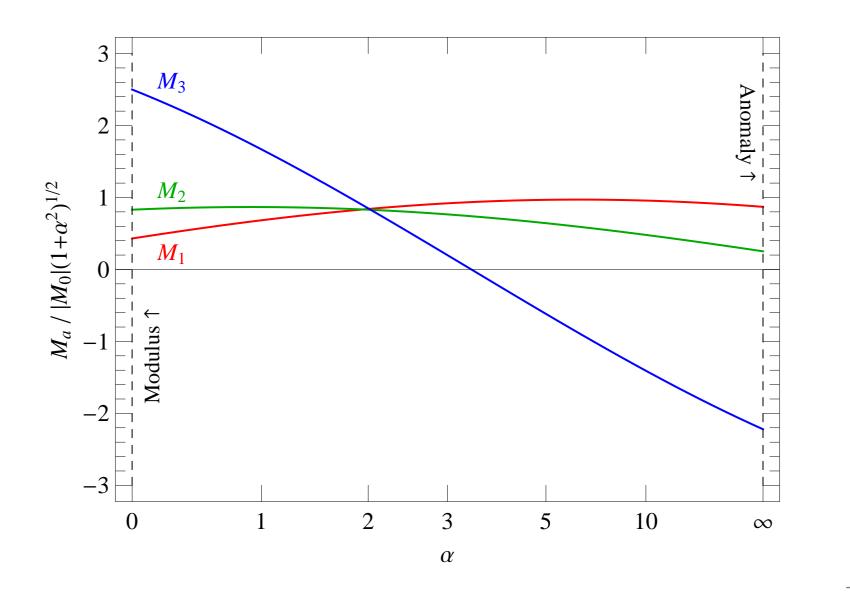

mirage mediation for gaugino masses

Evolution of couplings

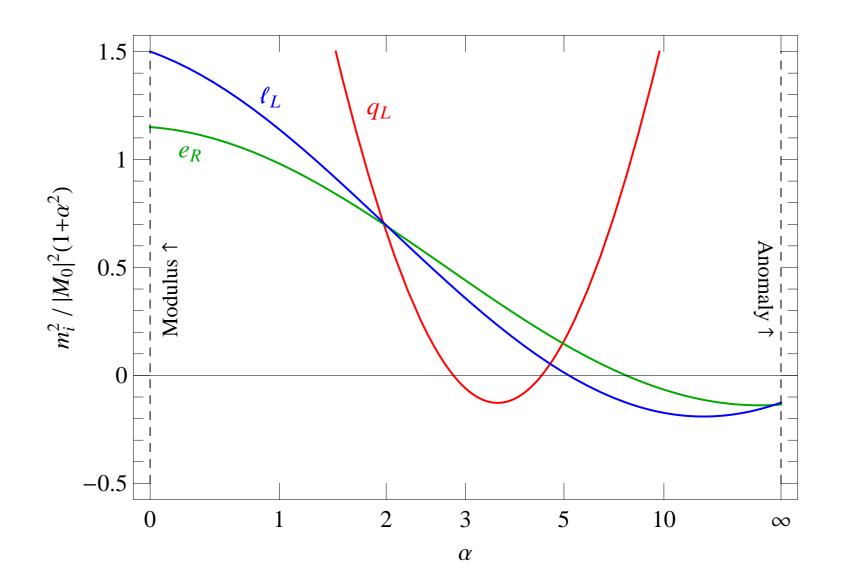
Mirage Scale

 $\alpha = 1$ $m_{3/2} = 20 \text{ TeV}$ $\phi = 0$

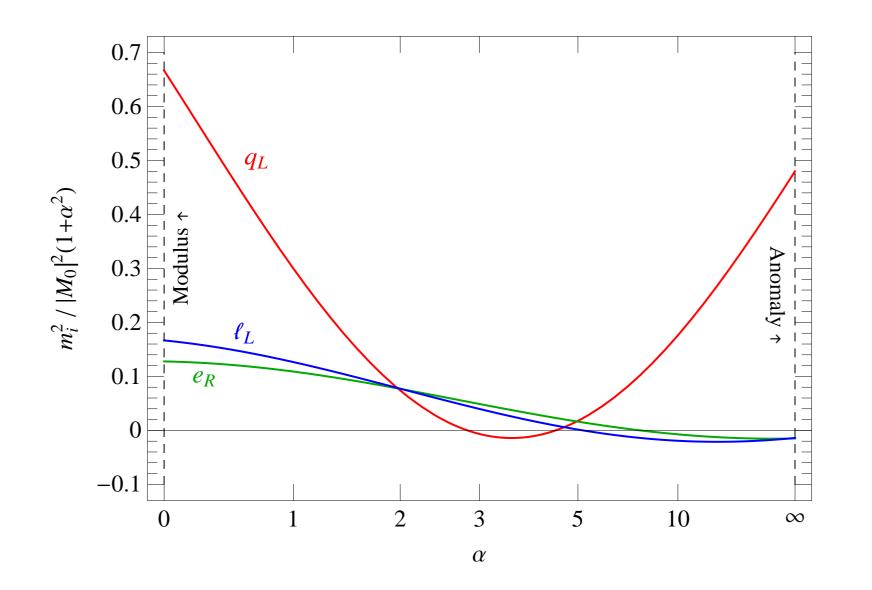
The Gaugino Code

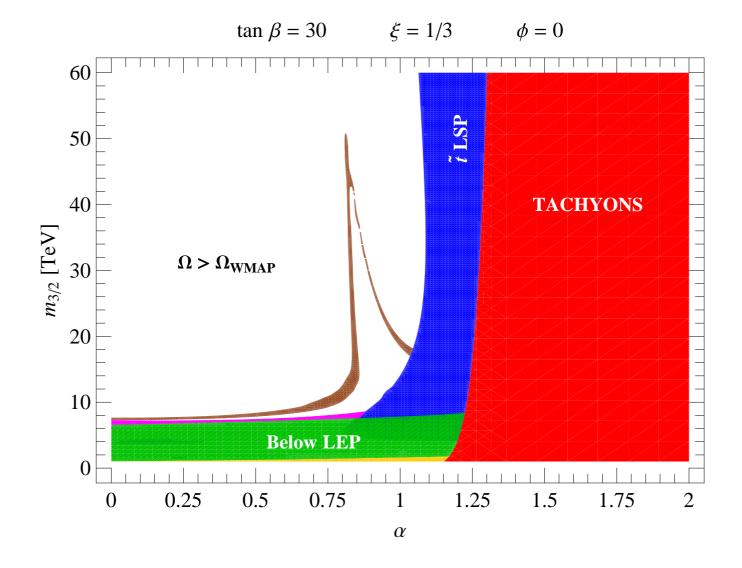

Mixed boundary conditions at the GUT scale characterized by the parameter α : the ratio of modulus to anomaly mediation.

- $M_1: M_2: M_3 \simeq 1:2:6$ for $\alpha \simeq 0$
- $M_1: M_2: M_3 \simeq 1: 1.3: 2.5$ for $\alpha \simeq 1$
- $M_1: M_2: M_3 \simeq 1:1:1$ for $\alpha \simeq 2$
- $M_1: M_2: M_3 \simeq 3.3: 1:9$
 -
- The mirage scheme leads to
- LSP χ_1^0 predominantly Bino
- a "compact" gaugino mass pattern.

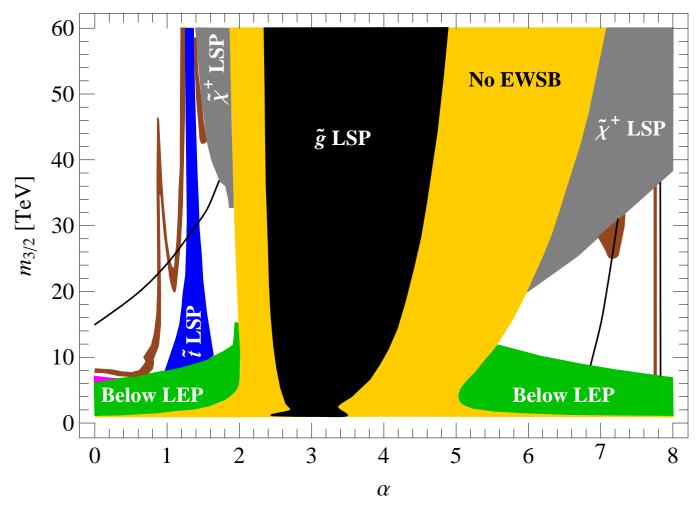

(Choi, HPN, 2007; Löwen, HPN, 2009)

for $\alpha \simeq \infty$


Gaugino Masses


Scalar Masses

Scalar Masses



Constraints on α

The discrete beauty of local grand unification, GUTs and Strings, MPI München, February 2010 - p. 30/33

Constraints on α (modified mirage)

 $\tan \beta = 30 \qquad \eta_i = 3$

Conclusion

String theory might provide us with a consistent UV-completion of the MSSM inchluding

- Local Grand Unification
- Accidental symmetries (of discrete origin)

Geography of extra dimensions plays a crucial role:

- gauge-Yukawa unification and a naturally heavy top
- gravity-mirage mediation without a "flavour problem"

We seem to live at a special place in the extra dimensions! The LHC might clarify the case for (local) grand unification.

Where do we live?

