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5 Golden Rules (2004)

Spinors of SO(10) (for families)

Incomplete multiplets (for Higgs)

Repetition of families (from extra dimensions)

N = 1 supersymmetry

Importance of discrete symmetries
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5 Golden Rules (2004)

Spinors of SO(10) (for families)

Incomplete multiplets (for Higgs)

Repetition of families (from extra dimensions)

N = 1 supersymmetry

Importance of discrete symmetries

These rules have bottom-up and top-down motivation

grand unification (evolution of couplings)

quark and lepton (neutrino) masses

proton stability (R-Parity)
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Rule 1 and 5

Spinors if SO(10) might be important even in absence
of GUT gauge group

one can incorporate top-Yukawa coupling and neutrino
see-saw mechanism

discrete symmetries with many applications
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Rule 1 and 5

Spinors if SO(10) might be important even in absence
of GUT gauge group

one can incorporate top-Yukawa coupling and neutrino
see-saw mechanism

discrete symmetries with many applications

From the mathematical structure we would prefer
exceptional groups

There is a maximal group: E8,

but E8 and E7 do not allow chiral fermions in d = 4.

How does this fit with our usual picture of unification
based on SU(5) or SO(10)?
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Maximal Group

E8 is the maximal group.

There are, however, no chiral representations in d = 4.
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E7

Next smaller is E7.

No chiral representations in d = 4 either
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E6

E6 allows for chiral representations even in d = 4.
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E5 = D5

E5 is usually not called exceptional.

It coincides with D5 = SO(10).
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E4 = A4

E4 coincides with A4 = SU(5)
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E3

E3 coincides with A2 × A1 which is SU(3) × SU(2).

Discrete symmetries, StringVacuum 2011, Busan, Korea, September 2011 – p. 9/66



Exceptional groups in string theory

String theory favours E8

E8 × E8 heterotic string

E8 enhancement as a nonperturbative effect
(M- or F-theory)
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Exceptional groups in string theory

String theory favours E8

E8 × E8 heterotic string

E8 enhancement as a nonperturbative effect
(M- or F-theory)

Strings live in higher dimensions:

chiral spectrum possible even with E8

E8 broken in process of compactification

provides source for more discrete symmetries

from E8/SO(10) and SO(6) of the higher dimensional
Lorentz group
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The use of additional symmetries

Symmetries are very useful for

absence of FCNC (solve flavour problem)

Yukawa textures à la Frogatt-Nielsen

solutions to the µ problem

creation of hierarchies

proton stability
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The use of additional symmetries

Symmetries are very useful for

absence of FCNC (solve flavour problem)

Yukawa textures à la Frogatt-Nielsen

solutions to the µ problem

creation of hierarchies

proton stability

Continuous global symmetries might be destroyed by
gravitational effects. We have to rely on

gauge symmetries and

discrete symmetries (Banks, Seiberg, 2010)
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Heterotic Braneworld

The heterotic braneworld is based on

orbifold compactification of the heterotic string

with calculability from conformal field theory
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Heterotic Braneworld

The heterotic braneworld is based on

orbifold compactification of the heterotic string

with calculability from conformal field theory

Fields can propagate

in the Bulk (d = 10 untwisted sector)

on 3-Branes (d = 4 twisted sector fixed points)

on 5-Branes (d = 6 twisted sector fixed tori)

This localization is an important property of the set-up and
should be taken seriously (it is not just an approximation to
obtain calculability)
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Calabi Yau Manifold
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Orbifold
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Local Grand Unification

String theory gives us a variant of GUTs

complete (or split) multiplets for fermion families

split multiplets for gauge- and Higgs-bosons

partial Yukawa unification
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Local Grand Unification

String theory gives us a variant of GUTs

complete (or split) multiplets for fermion families

split multiplets for gauge- and Higgs-bosons

partial Yukawa unification

Key properties of the theory depend on the geography
of the fields in extra dimensions.

This geometrical set-up is called local grand unification.

The localization of matter as well as the local structure of
the gauge group determines the properties of the theory.
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Localized gauge symmetries

SU(6)×SU(2)

SU(6)×SU(2)

SO(10)

SU(4)2

(Förste, HPN, Vaudrevange, Wingerter, 2004)
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Standard Model Gauge Group
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Symmetries

In the heterotic braneworld we find

gauge symmetries (no continuous global symmetries)

discrete symmetries from geometry and stringy
selection rules (Kobayashi, HPN, Plöger, Raby, Ratz, 2006)

The orbifold point is a special point in the moduli space of
the compact extra dimensions with enhanced symmetries.

These symmetries might be slightly broken. This will
introduce small parameters that lead to a creation of
hierarchies.

We might live close to the orbifold point.
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Location matters
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Symmetries in heterotic braneworld

Applications of discrete symmetries:

(nonabelian) family symmetries (and FCNC)
(Ko, Kobayashi, Park, Raby, 2007)

Yukawa textures (via Frogatt-Nielsen mechanism)

a solution to the µ-problem
(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2007)

creation of hierarchies
(Kappl, HPN, Ramos-Sanchez, Ratz, Schmidt-Hoberg, Vaudrevange, 2008)

proton stability via “Proton Hexality” or ZR
4

(Förste et al. 2010; Lee et al. 2011)

approximate global U(1) for a QCD accion
(Choi, Kim, Kim, 2006; Choi, HPN, Ramos-Sanchez, Vaudrevange, 2008)
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The µ problem

In general we have to worry about

doublet-triplet splitting

mass term for additional doublets

the appearance of “naturally” light doublets

In the heterotic braneworld we find models

with only 2 doublets

which are neutral under all selection rules

if M(si) allowed in superpotential

then M(si)HuHd is allowed as well
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The µ problem II

We have verified that (up to order 8 in the superpotential)

Fi = 0 implies automatically

M(si) = 0 for all allowed terms M(si) in the
superpotential W

Therefore

W = 0 in the supersymmetric (Minkowski) vacuum

as well as µ = ∂2W/∂Hu∂Hd = 0, while all the vectorlike
exotics decouple

with broken supersymmetry µ ∼ m3/2 ∼< W >

This solves the µ-problem

Discrete symmetries, StringVacuum 2011, Busan, Korea, September 2011 – p. 22/66



The creation of the hierarchy

Is there an explanation for a vanishing µ:

string miracle or an underlying symmetry?

The µ-term is in fact forbidden by an R-smmetry.

For a continuous R-symmetry we would have

a supersymmetric ground state with W = 0
and U(1)R spontaneously broken

a problematic R-Goldstone-Boson

However, the above R-symmetry appears as an
accidental continous symmetry resulting from an exact
discrete symmetry of (high) order N
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Hierarchy

Such accidental symmetries lead to

creation of a small constant in the superpotential

explanation of a small µ term
(Kappl, HPN, Ramos-Sanchez, Ratz, Schmidt-Hoberg, Vaudrevange, 2008)

Even with a moderate hierarchy like φ/MP ∼ 10−2 one can
generate small values for µ and < W >

m3/2 ∼ Weff = c + A e−aS

The second term in Weff could be protected by an
anomalous R-symmetry like e.g. ZR

4

(Lee, Raby, Ratz, Ross, Schieren, Schmidt-Hoberg, Vaudrevange; 2010)
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F-theory

F-theory with enhanced exceptional gauge symmetry is the
way to incorporate rule 1 in Type II theories. It allows

allows spinors of SO(10)

a non-vanishing top quark Yukawa coupling
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F-theory

F-theory with enhanced exceptional gauge symmetry is the
way to incorporate rule 1 in Type II theories. It allows

allows spinors of SO(10)

a non-vanishing top quark Yukawa coupling

Phenomenological constructions are based on the concept
of local models, e.g. at the local E8 point. (Heckman, Vafa, 2010)

a single gauge group like E8

containing other symmetries like R-parity as well

there might not be a global completion!

Local E8 point does not possess all the ingredients for
realistic model building.

(Marsano, Schafer-Namecki, Saulina, 2011; Lüdeling, HPN, Stephan, 2011)
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Clarification

Do not confuse

“Local Grand Unification” with “Local Model Building”.

Local Grand Unification appears in consistent (global)
string models where the gauge symmetries are
enhanced at special points in extra-dimensional space.

Local Model Building is an attempt to construct models
without the incorporation of gravity (these models are
potentially inconsistent).

Do not trust the predictions of “Local Models” unless they
are confirmed by a global completion!
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Rule 6: Global Models

Sometimes it is said that globally consistent models are
only relevant for questions like moduli stabilization......

this needs not be correct (as experience shows)

the really reliable (discrete) symmetries can only be
understood within a global approach (e.g. R-parity)
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Rule 6: Global Models

Sometimes it is said that globally consistent models are
only relevant for questions like moduli stabilization......

this needs not be correct (as experience shows)

the really reliable (discrete) symmetries can only be
understood within a global approach (e.g. R-parity)

Phenomenological analyses of local models typically

rely on continuous global U(1)s

that might be broken in the full theory

what are the remaining symmetries?

We need to answer this question before any predictions can
be made!
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Rule 7: Berechenbarkeit

Nowadays we need calculability that goes beyond the
effective supergravity field theory approach, e.g. exact
conformal field theory

flat orbifolds, free fermionic constructions (Faraggi et al.)

tensoring CFTs (Gepner models) (Schellekens et al.)
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Rule 7: Berechenbarkeit

Nowadays we need calculability that goes beyond the
effective supergravity field theory approach, e.g. exact
conformal field theory

flat orbifolds, free fermionic constructions (Faraggi et al.)

tensoring CFTs (Gepner models) (Schellekens et al.)

We have to analyze points of enhanced symmetries and
enhanced particle spectra

slightly broken symmetries (Frogatt-Nielsen)

small parameters to create hierarchies

Hopefully nature is close to points of enhanced calculability.
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Calabi Yau Manifold
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Orbifold
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The fate of smooth compactification

Models on smooth manifolds describe generic points in
moduli space

limited calculability in practice (not full CFT)

do not see locally enhanced symmetries and spectra

but location of fields is of physical relevance
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The fate of smooth compactification

Models on smooth manifolds describe generic points in
moduli space

limited calculability in practice (not full CFT)

do not see locally enhanced symmetries and spectra

but location of fields is of physical relevance

As a result, phenomenological analyses of these models
often rely on continuous gobal symmetries

an approximation is needed for “calculability”

heterotic Calabi-Yau compactification should be related
e.g. to a point with exact CFT

For F-theory it seems to be a real challenge to find a flat
(CFT) approximation.
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Improve calculability

Have to connect smooth compactification to e.g. flat
orbifolds (Groot Nibbelink et al.; Blaszczyk et al.; 2009-2011)

resolution of singularities within toric geometry

is a good approximation in large volume limit
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Improve calculability

Have to connect smooth compactification to e.g. flat
orbifolds (Groot Nibbelink et al.; Blaszczyk et al.; 2009-2011)

resolution of singularities within toric geometry

is a good approximation in large volume limit

But there are still some points that have to be clarified

relation of number of massless states in orbifold and
blow-up

“missing” Yukawa couplings in large volume limit

Local anomalies might play an important role in the attempt
to transfer calculability from orbifolds to smooth manifolds.

(Blaszczyk, Cabo Bizet, HPN, Ruehle, 2011)
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The Anomaly Polynomial

The Green-Schwarz anomaly polynomial is a useful tool to
study the relation between various schemes. The 12-form

I12(Fi, R) = I4 × I8

contains crucial information on the properties of the model:
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The Anomaly Polynomial

The Green-Schwarz anomaly polynomial is a useful tool to
study the relation between various schemes. The 12-form

I12(Fi, R) = I4 × I8

contains crucial information on the properties of the model:

can be computed independently in the different set-ups

controls the coupling of “axions” to matter fields

reveals broken and unbroken (discrete) symmetries.

Relate models of reduced calculability to those where
explicit calculations can be done.

(Blaszczyk, Cabo Bizet, HPN, Ruehle, 2011)
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Golden Rules (2011)

Spinors of SO(10) (for families)

Incomplete multiplets (for Higgs)

Repetition of families (from extra dimensions)

N = 1 supersymmetry

Importance of discrete symmetries

globally consistent models

Berechenbarkeit

study GS-anomaly polynomial
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Golden Rules (2011)

Spinors of SO(10) (for families)

Incomplete multiplets (for Higgs)

Repetition of families (from extra dimensions)

N = 1 supersymmetry

Importance of discrete symmetries

globally consistent models

Berechenbarkeit

study GS-anomaly polynomial

Let us hope that nature sits at a point of enhanced
symmetry and calculability.
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This is the place
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Unification

Higgs doublets are in
untwisted (U3) sector

heavy top quark

µ−term protected by a
discrete symmetry
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threshold corrections (“on third torus”) allow unification
at correct scale around 1016 GeV

natural incorporation of gauge-Yukawa unification
(Faraggi, 1991; Hosteins, Kappl, Ratz, Schmidt-Hoberg, 2009)
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Hidden Sector Susy Breakdown
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Gravitino mass m3/2 = Λ3/M2

Planck
is in the TeV range

for the hidden sector gauge group SU(4)

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2006)
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The µ problem

In general we have to worry about

doublet-triplet splitting

mass term for additional doublets

the appearance of “naturally” light doublets

In the heterotic braneworld we find models

with only 2 doublets

which are neutral under all selection rules

if M(si) allowed in superpotential

then M(si)HuHd is allowed as well
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The µ problem II

We have verified that (up to order 8 in the superpotential)

Fi = 0 implies automatically

M(si) = 0 for all allowed terms M(si) in the
superpotential W

Therefore

W = 0 in the supersymmetric (Minkowski) vacuum

as well as µ = ∂2W/∂Hu∂Hd = 0, while all the vectorlike
exotics decouple

with broken supersymmetry µ ∼ m3/2 ∼< W >

This solves the µ-problem
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The creation of the hierarchy

Is there an explanation for a vanishing µ:

string miracle or an underlying symmetry?

The µ-term is in fact forbidden by an R-smmetry.

For a continuous R-symmetry we would have

a supersymmetric ground state with W = 0
and U(1)R spontaneously broken

a problematic R-Goldstone-Boson

However, the above R-symmetry appears as an
accidental continous symmetry resulting from an exact
discrete symmetry of (high) order N
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Hierarchy

Such accidental symmetries lead to

creation of a small constant in the superpotential

explanation of a small µ term
(Kappl, HPN, Ramos-Sanchez, Ratz, Schmidt-Hoberg, Vaudrevange, 2008)

Even with a moderate hierarchy like φ/MP ∼ 10−2 one can
generate small values for µ and < W >

m3/2 ∼ Weff = c + A e−aS

The second term in Weff could be protected by an
anomalous R-symmetry like e.g. ZR

4

(Lee, Raby, Ratz, Ross, Schieren, Schmidt-Hoberg, Vaudrevange; 2010)
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Proton stability

In the standard model Baryon number U(1)B is not a good
symmetry

Baryon and lepton number are anomalous

cannot be gauged in a consistent way

unstable proton
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Proton stability

In the standard model Baryon number U(1)B is not a good
symmetry

Baryon and lepton number are anomalous

cannot be gauged in a consistent way

unstable proton

Baryon number violation is needed for baryogenesis.

Grand unification addresses these questions

proton decay via dimension-6 operators

GUT scale has to be sufficiently high
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GUTs need SUSY

Grand unification most natural in the framework of SUSY

evolution of gauge couplings

GUT scale is pushed to higher value
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GUTs need SUSY

Grand unification most natural in the framework of SUSY

evolution of gauge couplings

GUT scale is pushed to higher value

But there is a problem

dimension-4 and -5 operators

more symmetries needed

matter parity (or R-parity)

baryon triality, proton hexality
(Ibanez, Ross, 1991; Dreiner, Luhn, Thormeier, 2005)
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MSSM

The minimal particle content of the susy extension of the
standard model includes chiral superfields

Q, Ū , D̄ for quarks and partners

L, Ē for leptons and partners

Hd, Hu Higgs supermultiplets
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MSSM

The minimal particle content of the susy extension of the
standard model includes chiral superfields

Q, Ū , D̄ for quarks and partners

L, Ē for leptons and partners

Hd, Hu Higgs supermultiplets

with superpotential

W = QHdD̄ + QHuŪ + LHdĒ + µHuHd.

Also allowed (but problematic) are dimension-4 operators

ŪD̄D̄ + QLD̄ + LLĒ.

Discrete symmetries, StringVacuum 2011, Busan, Korea, September 2011 – p. 44/66



The question of proton stability

These dimension-4 operators could be forbidden by some
symmetry

like matter parity (or R-parity)

stable LSP for dark matter
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The question of proton stability

These dimension-4 operators could be forbidden by some
symmetry

like matter parity (or R-parity)

stable LSP for dark matter

Where does this symmetry come from?

it could be a subgroup of SO(10)

in consistent heterotic constructions it comes from
(E8 × E8)/SO(10)

in local F-theory construction from E8/SO(10)
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Proton Hexality

But there are in addition dimension-5 operators that might
mediate too fast proton decay QQQL + Ū ŪD̄Ē

Q Ū D̄ L Ē Hu Hd ν̄

6 Y 1 −4 2 −3 6 3 −3 0

Z
matter
2

1 1 1 1 1 0 0 1

B3 0 −1 1 −1 2 1 −1 0

P6 0 1 −1 −2 1 −1 1 3

Proton hexality is exactly what we need:

dangerous dimension 4 and 5 operators forbidden

neutrino Majorana masses allowed (LLHuHu)
(Dreiner, Luhn, Thormeier, 2005)
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GUTs and Hexality

Combination of GUTs and proton hexality is perfect

But GUTs and Hexality are incompatible ( Luhn, Thormeier, 2007)

Example:
the 10-dimensional representation of SU(5) includes
Ū , Q and Ē and they cannot all have the same charge
under hexality.

The problem is solved in

Local Grand Unification

need split multiplets for matter fields

nonlocal structure of matter fields in compactified
dimensions
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Localized gauge symmetries

SU(6)×SU(2)

SU(6)×SU(2)

SO(10)

SU(4)2

(Förste, HPN, Vaudrevange, Wingerter, 2004)
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A T2/Z4 toy example

Consider the T2/Z4 orbifold, where we have two different
types of fixed points

fixed under (θ, e1)

fixed under (θ, 0) fixed under (θ2, e1)

identified by θ

fixed under (θ2, e2)

under rotation of θ = π/2 and shift of the lattice vectors.

Discrete symmetries, StringVacuum 2011, Busan, Korea, September 2011 – p. 49/66



A T2/Z4 toy example

For a suitable embedding of twist and shift in the gauge
group SO(12) we have the following
local gauge group structure

SO(10) × U(1)x

SO(12) in bulk

SO(10) × U(1)x

SU(4) × SU(4)

SO(8) × SU(2) × SU(2)

This allows split representations compatible with P6 and
does not require huge representations for the breakdown of
SO(12).
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Lessons from the heterotic braneworld

The concept of local GUTs leads to a nontrivial structure of
matter distribution in extra dimensions

R-symmetries as subroup of SO(6) to solve the
µ problem

split multiplets for proton hexality

ZR
4

and nonperturbative effects
(Lee, Raby, Ratz, Ross, Schieren, Schmidt-Hoberg, Vaudrevange; 2010)

discrete symmetries as subroups of E8 × E8 × SO(6)
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Lessons from the heterotic braneworld

The concept of local GUTs leads to a nontrivial structure of
matter distribution in extra dimensions

R-symmetries as subroup of SO(6) to solve the
µ problem

split multiplets for proton hexality

ZR
4

and nonperturbative effects
(Lee, Raby, Ratz, Ross, Schieren, Schmidt-Hoberg, Vaudrevange; 2010)

discrete symmetries as subroups of E8 × E8 × SO(6)

Note that we have consistent string models in a global
construction. There is a plenitude of (discrete) gauge
symmetries, both abelian and nonabelian.

(Kobayashi et al.,2006; Araki et al., 2008)
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Conclusion

0 String theory might provide us with a consistent
UV-completion of the MSSM including

Local Grand Unification as a result of a
consistent global construction,

a plenitude of discrete symmetries,

originating from some non-localities of matter
distribution in extra dimensions.

Geography of extra dimensions plays a crucial role.

Local Grand Unification is the right way to proceed.

Discrete symmetries as subgroups of E8 × E8 × SO(6) as a
crucial prediction of string theory!
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1984

Discrete symmetries, StringVacuum 2011, Busan, Korea, September 2011 – p. 53/66



1984

Discrete symmetries, StringVacuum 2011, Busan, Korea, September 2011 – p. 54/66



1984
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Origin of discrete symmetries

The semidirect product of Z2 × Z2 and S2

leads to the nonabelian group D4
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Local GUT picture

Family symmetries in local GUT models
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