SUSY Forever

Hans Peter Nilles

Physikalisches Institut

Universität Bonn

Predictions

There was some optimism in the early 80's:

 Experiments within the next five to ten years will tell us whether supersymmetry at the weak scale is a myth or reality. (Nilles, 1984)

Predictions

There was some optimism in the early 80's:

 Experiments within the next five to ten years will tell us whether supersymmetry at the weak scale is a myth or reality. (Nilles, 1984)

This statement is still correct!

Predictions

There was some optimism in the early 80's:

Experiments within the next five to ten years will tell us whether supersymmetry at the weak scale is a myth or reality. (Nilles, 1984)

The statement was motivated in view of LEP. Today we wait for LHC results. Where are we now?

- No sign for physics beyond the Standard Model
- No (SM) Higgs boson seen either
- Do we have to worry?

A well-motivated pattern

A specific pattern for the soft masses with a large gravitino mass in multi-TeV range (e.g. O(50)TeV)

- normal squarks and sleptons in multi-TeV range
- top squarks $(\tilde{t}_L, \tilde{b}_L)$ and \tilde{t}_R in TeV-range (suppressed by $\log(M_{\text{Planck}}/m_{3/2}) \sim 4\pi^2$)
- A-parameters in TeV range
- gaugino masses in TeV range
- mirage pattern for gaugino masses (compressed spectrum)

A well motivated pattern emerging from the heterotic string. (Krippendorf, Nilles, Ratz, Winkler, 2012)

SUSY Search

SUSY Predictions

gauge coupling unification (mainly from gauginos)

MSSM (supersymmetric)

Standard Model

SUSY Predictions

- gauge coupling unification (mainly from gauginos)
- 2 Higgs (super) multiplets
- heavy top quark
- upper bound on the lightest Higgs boson (a unique prediction compared to other scenarii for physics beyond the Standard Model)

Higgs-Window

SUSY Predictions

- gauge coupling unification (mainly from gauginos)
- 2 Higgs (super) multiplets
- heavy top quark
- upper bound on the lightest Higgs boson

SUSY Predictions

- gauge coupling unification (mainly from gauginos)
- 2 Higgs (super) multiplets
- heavy top quark
- upper bound on the lightest Higgs boson

What are the mass scales?

- Iightest Higgs mass less than 130 GeV (e.g. 118 GeV)
- superpartners TeV or multi-TeV?
- Iight LSP?
- old "No Lose" theorem: 20+20 TeV at the SSC

The "Top Story"

- tau and bottom found in the 70's: prediction of top quark
- toponium $(t\bar{t})$ at 27 GeV
- PETRA/PEP with CM-energy up to 40 GeV
- discovery of Higgs form $t\overline{t}$ to Higgs + Gamma?

The "Top Story"

- tau and bottom found in the 70's: prediction of top quark
- toponium ($t\bar{t}$) at 27 GeV
- PETRA/PEP with CM-energy up to 40 GeV
- discovery of Higgs form $t\bar{t}$ to Higgs + Gamma?
- The Top Quark is a special particle!
- early 80's: SUSY models with radiative EW-symmetry breakdown required heavy top-quark
- even 50 GeV was considered ridiculous
- a natural reason for 175 GeV: "Gauge-Top-Unification"
- today heavy top needed for $m_H > 114 \text{ GeV}$

Some questions

What are "natural" values for SUSY?

- gaugino mass pattern
- gaugino versus fermion masses
- which parameters are more "robust"

Some questions

What are "natural" values for SUSY?

- gaugino mass pattern
- gaugino versus fermion masses
- which parameters are more "robust"

Can we rule out SUSY?

- find a heavy Higgs (this opportunity has been missed already)
- find something else as physics BeyondSM
- does SUSY die or has it to fade away?

Messages

Some theoretical guidelines:

- wait till we know the mass of Higgs boson
- gaugino mass predictions are more robust
- "sequestering" allows a large hierarchy between gaugino and sfermion masses
- "sequestering" limited by $\log(m_{3/2}/M_{\text{Planck}})$

Messages

Some theoretical guidelines:

- wait till we know the mass of Higgs boson
- gaugino mass predictions are more robust
- "sequestering" allows a large hierarchy between gaugino and sfermion masses
- "sequestering" limited by $\log(m_{3/2}/M_{\text{Planck}})$

Potentially relevant questions:

- what is the pattern of gaugino masses?
- are super-heavy sfermions possible?
- are some of the soft mass terms suppressed?

Reading the Gaugino Code

First step to test these ideas at the LHC:

look for pattern of gaugino masses

Let us assume the

- Iow energy particle content of the MSSM
- measured values of gauge coupling constants

$$g_1^2: g_2^2: g_3^2 \simeq 1:2:6$$

The evolution of gauge couplings would then lead to unification at a GUT-scale around $10^{16}\ {\rm GeV}$

Gravity (Modulus) Mediation

Universal gaugino mass at the GUT scale

mSUGRA pattern:

 $M_1: M_2: M_3 \simeq 1: 2: 6 \simeq g_1^2: g_2^2: g_3^2$

as realized in popular schemes such as gravity-, modulus- and dilaton-mediation

This leads to

- LSP χ_1^0 predominantly Bino
- $G = M_{\rm gluino}/m_{\chi_1^0} \simeq 6$

as a characteristic signature of these schemes.

Anomaly Mediation

Gaugino masses below the GUT scale are determined by the β functions

anomaly pattern:

 $M_1: M_2: M_3 \simeq 3.3: 1:9$

at the TeV scale as the signal of anomaly mediation.

For the gauginos, this implies

- LSP χ_1^0 predominantly Wino
- $G = M_{\rm gluino}/m_{\chi_1^0} \simeq 9$

Pure anomaly mediation inconsistent, as sfermion masses are problematic in this scheme (tachyonic sleptons).

Top-down arguments

In string theory we have (from flux and gaugino condensate)

 $W = \text{flux} - \exp(-X)$

- modulus mediation suppressed $X \sim \log(M_{\rm Planck}/m_{3/2}) \sim 4\pi^2$
- radiative corrections become relevant (proportional to the β function, i.e. negative for the gluino, positive for the bino)
- Mixed mediation scheme: Mirage Mediation (MMAM)
- Mirage pattern for gaugino masses: $m_{1/2} \sim m_{3/2}/4\pi^2$

(Choi, Falkowski, Nilles, Olechowski, 2005)

Evolution of couplings

The Mirage Scale

(Lebedev, HPN, Ratz, 2005)

Gaugino Masses

Mirage Pattern

Mixed boundary conditions at the GUT scale characterized by the parameter α : the ratio of modulus to anomaly mediation.

- $M_1: M_2: M_3 \simeq 1: 1.3: 2.5$ for $\alpha \simeq 1$
- $M_1: M_2: M_3 \simeq 1: 1: 1$ for $\alpha \simeq 2$

The mirage scheme leads to

- LSP χ_1^0 predominantly Bino
- $G = M_{\text{gluino}} / m_{\chi_1^0} < 6$
- a "compact" (compressed) gaugino mass pattern (a challenge for LHC searches).

Constraints on α

Top-Down argument II

scalar masses are less protected

(Lebedev, Nilles, Ratz, 2006; Löwen, Nilles, 2008)

- Iarge contributions to sfermion masses
- removes potential tachyons
- Heavy squarks and sleptons: e.g. $m_0 \sim 50 \text{TeV}$

Constraints on α

Lessons from heterotic string theory

- scalar masses are less protected
 - heavy squarks and sleptons: $m_0 \sim O(50)$ TeV
- But, the top quark plays a special role
 - a large value of the top-quark Yukawa coupling requires a special location of top and Higgs in extra dimensions of string theory

(Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2007)

this is a result of gauge-Yukawa-unification

 $g_{top} \sim g_{gauge} \sim g_{string}$ that explains the large values of the top-quark mass

stops remain in TeV range

(Krippendorf, Nilles, Ratz, Winkler, 2012)

The Pattern

This provides a specific pattern for the soft masses with a large gravitino mass in multi-TeV range (e.g. O(50)TeV)

- normal squarks and sleptons in Multi-TeV range
- top squarks $(\tilde{t}_L, \tilde{b}_L)$ and \tilde{t}_R in TeV-range (suppressed by $\log(M_{\text{Planck}}/m_{3/2}) \sim 4\pi^2$)
- A-parameters in TeV range
- gaugino masses in TeV range
- mirage pattern for gaugino masses (compressed spectrum)

Can this be confirmed (or ruled out) by the LHC?

The overall scale

There is no (reliable) prediction for the gravitino mass

- except for fine-tuning arguments
- "no lose" criterion (SSC with 20+20 TeV)
- does LHC satisfy this criterion?

The overall scale

There is no (reliable) prediction for the gravitino mass

- except for fine-tuning arguments
- "no lose" criterion (SSC with 20+20 TeV)
- Joes LHC satisfy this criterion?

Betting in the early 80's

- I bet that supersymmetry will be discovered before SSC gets into operation
- I bet that supersymmetry will have been forgotten before SSC gets into operation

Continued prediction

There is still some optimism in 2011:

Experiments within the next five to ten years will tell us whether supersymmetry at the weak scale is a myth or reality.

We have to wait and see.

Bavarian Philosopher

(K. Valentin, 1882-1948)

Früher haben wir langsam gewartet, heute warten wir immer schneller.

A well-motivated pattern

This provides a specific pattern for the soft masses with a large gravitino mass in multi-TeV range (e.g. O(50)TeV)

- normal squarks and sleptons in Multi-TeV range
- top squark $(\tilde{t}_L, \tilde{b}_L)$ and \tilde{t}_R in TeV-range (suppressed by $\log(M_{\text{Planck}}/m_{3/2}) \sim 4\pi^2$)
- A-parameters in TeV range
- gaugino masses in TeV range
- mirage pattern for gaugino masses (compressed spectrum)

Can this be confirmed (or ruled out) by the LHC?