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Flavor symmetries

Flavor symmetries are important ingredients of the SM

Yukawa interaction for various families

masses and mixings for quarks and leptons

the question of CP-symmetry and its violation

Complicated structure not well understood

different structures in quark and lepton sectors

CP-violation needs complexity

Flavor symmetries are highly non-universal

Question about the origin of flavor and CP
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Flavor from String Theory

String theory provides a variety of (discrete) flavor
symmetries. This comes from the

geometrical structure of extra dimensions

string selection rules

We present a new and general method to determine the
flavor symmetries of string theory

it is based on outer automorphism of the
Narain space group

it unifies flavor and CP symmetries

it includes modular symmetries in a nontrivial way
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Outline

the traditional approach to flavor symmetries via
guesswork (Kobayashi, Nilles, Ploeger, Raby, Ratz, 2006)

connections between flavor and CP
(Nilles, Ratz, Trautner, Vaudrevange, 2018)

the Narain lattice and its outer automorphisms

modular symmetries enhance "traditional" flavor
symmetries (Baur, Nilles, Trautner, Vaudrevange, 2019)

non-universal behaviour in moduli space

explicit example of 2d Z3 orbifold and its "landscape" of
flavor symmetries

lessons from string theory for model building
(Baur, Nilles, Trautner, Vaudrevange, to appear)
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Guessing symmetries: Interval S1/Z2

m = 1

m = 0
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Discrete symmetry D4

bulk and brane fields

S2 symmetry from
interchange of fixed
points

Z2×Z2 symmetry from
brane field selection
rules

m = 1

m = 0

D4 as multiplicative closure of S2 and Z2 × Z2

D4 – a non-abelian subgroup of SU(2)flavor

flavor symmetry for the two lightest families
(Kobayashi, Nilles, Ploeger, Raby, Ratz, 2006)
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Orbifold T2/Z3
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Discrete symmetry ∆(54)

untwisted and twisted
fields

S3 symmetry from
interchange of fixed
points

Z3 × Z3 symmetry
from orbifold selection
rules

e1

e2

(θ, 0)

X

(θ, e1)

Y

(θ, e1 + e2)
Z

∆(54) as multiplicative closure of S3 and Z3 × Z3

∆(54) – a non-abelian subgroup of SU(3)flavor

flavor symmetry for three families of quarks and leptons
(Kobayashi, Nilles, Ploeger, Raby, Ratz, 2006)
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∆(54) group theory

∆(54) is a non-abelian group and has representations:

one trivial singlet 10 and one nontrivial singlet 1−

two triplets 31, 32 and corresponding anti-triplets 3̄1, 3̄2

four doublets 2k (k = 1, 2, 3, 4)

Some relevant tensor products are:

31 ⊗ 3̄1 = 10 ⊕ 21 ⊕ 22 ⊕ 23 ⊕ 24

2k ⊗ 2k = 10 ⊕ 1− ⊕ 2k

∆(54) is a good candidate for a flavour symmetry.

But where is CP?
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CP as outer automorphism

Outer automorphisms map the group to itself but are not
group elements themselves

∆(54) has outer automorphism group S4

CP could be Z2 subgroup of this S4

Physical CP transforms (rep) to (rep)∗

This gives an intimate relation of flavour and CP symmetry

CP broken due to the presence of winding modes

lepto-genesis through decay of winding modes

CP-violation à la CKM via field dependent Yukawa
couplings (Nilles, Ratz, Trautner, Vaudrevange, 2018)
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Search for a general method

We have seen that even in simple systems we obtain
sizeable flavor groups

D4 for the interval

∆(54) for the 2-dimensional Z3 orbifold

Did we find the complete flavor symmetry in these cases?

In reality we have even six compact dimensions

variety of complicated group structures possible

dependence on localisation of fields in extra dimensions

A general mechanism to find the complete set of flavor
symmetries is based on the

outer automorphisms of the Narain space group.
(Baur, Nilles, Trautner, Vaudrevange, 2019)
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The Narain Lattice

In the string there are D right- and D left-moving degrees of
freedom Y = (yR, yL). Y compactified on a 2D torus

Y =

(

yR
yL

)

∼ Y + EN̂ =

(

yR
yL

)

+ E

(

n

m

)

defines the Narain lattice with

the string’s winding and Kaluza-Klein quantum numbers
n and m

the Narain vielbein matrix E that depends on the moduli
of the torus: radii, angles and anti-symmetric tensor
fields B.
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The Narain Space Group

A ZK orbifold with twist Θ leads to the identification

Y ∼ ΘkY + EN̂ where Θ =

(

θR 0

0 θL

)

and ΘK = 1

with θL, θR elements of SO(D). For a symmetric orbifolds
θL = θR (we do not include roto-translations here).

The Narain space group g = (Θk, EN̂) is then generated by

twists (Θ, 0) and shifts (1, Ei) for i = 1 . . . 2D

Outer automorphisms map the group to itself but are not
elements of the group.
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Modular Transformations

Modular transformation exchange windings and momenta
and act nontrivially on the moduli of the torus.
In D = 2 these transformations are connected to the group
SL(2, Z) acting on Kähler and complex structure moduli.
The group SL(2, Z) is generated by two elements

S , T : with S4 = 1 and S2 = (ST )3

On a modulus M with have the transformations

S : M → −
1

M
and T : M → M + 1

Further transformations might include M → −M and mirror
symmetry between Kähler and complex structure moduli.
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Candidate symmetries

As outer automorphisms of the Narain space group we
might find

traditional flavor symmetries which are universal in
moduli space

a subset of the modular transformations that act as
symmetries at specific "points" in moduli space

at these "points" we shall have an enhanced symmetry
that combines the traditional flavor symmetry with some
of the modular symmetries

The full flavor symmetry is non-universal in moduli space
At generic points in moduli space we have the universal
traditional flavor symmetry
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Orbifold T2/Z3
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Example: T2/Z3 Orbifold

On the orbifold some of the moduli are frozen

lattice vectors e1 and e2 have the same length

angle is 120 degrees

Modular transformations form a subgroup of SL(2, Z)

Γ(3) as a mod(3) subgroup of SL(2, Z); (Γ(3) = A4)

Γ(3) acts on the moduli

twisted fields transform under a bigger group T ′,
(similar to enhancement of SO(3) to SU(2) for spinors)

(Lauer, Mas, Nilles, 1989; Lerche, Lüst, Warner, 1989)

transformation M → −M completes the picture

Full group is SG(48,29) with 48 elements
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Moduli space of Γ(3)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
T1

T2
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Flavour Symmetries I

Generic point in moduli space.

Outer automorphisms of the Narain space group are

shift A = (14;
1

3
, 2
3
, 0, 0)

and shift B = (14; 0, 0,
1

3
, 1
3
)

a left-right symmetric rotation C = (−14; 0, 0, 0, 0)

Multiplicative closure of A, B and C leads to ∆(54).

the earlier guesswork gave the correct result!

but the new method produces the result automatically

can be generalised easily to more complicated
situations (like, e.g. six dimensions)
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Moduli space of flavour groups
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Fixed lines and points
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S : M → −
1

M
, T : M → M + 1 and U : M → −M
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Flavour Symmetries II

The red lines:

These are fixed lines under T and U . We have

again A, B, and C

and a left-right symmetric reflection D

Multiplicative closure of leads to SG(108, 17). This includes
the formerly discussed CP-transformation! Unification of
flavor and CP (spontaneous breakdown away from the line).

The circles: e.g. fixed lines under S and U

new asymmetric reflection E (instead of D)

again SG(108, 17) but differently aligned

enhanced with different Z2 from S4 = Out(∆(54))
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Moduli space of flavour groups
.
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Flavour Symmetries III

Blue squares: two lines meet

enhancement to SG(216, 87)

The small circles: three lines meet

maximum enhancement to SG(324, 39)

The modular group T ′ has 24 elements, but not all of them
lead to an enhancement of the flavor group ∆(54).

Only the elements within S4 of the outer automorphisms of
∆(54) are relevant

this leads to unification of flavour and CP

CP exact at those fixed lines and points
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Messages

We have designed a generic method to find all flavor
symmetries (based on the Narain space group)

unification of traditional (discrete) flavor, CP und
modular symmetries

traditional flavor symmetry is universal in moduli space

there are non-universal enhancements (including CP at
some places (broken in generic moduli space))

not the full modular transformations can appear as
symmetries

the potential flavor groups are large (in our case already
up to SG(324, 39) for two extra dimensions)
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Consequences

This opens a new arena for flavor model building

a new look at CP as discrete gauge symmetry
(Nilles, Ratz, Trautner, Vaudrevange, 2018)

modular symmetries for flavor (Altarelli, Feruglio, 2006; Feruglio, 2017)

groups are large and allow for flexibility (Hagedorn, König, 2018)

the concept of local flavor symmetries allows different
flavor groups for different sectors of the theory

(Baur, Nilles, Trautner, Vaudrevange, 2019)

non-universal structure from modular symmetries (there
is still the traditional universal flavor group)

different flavor symmetries for quarks and leptons are
no surprise
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