Mirage mediation, uplifting and gaugino masses

Hans Peter Nilles

Physikalisches Institut, Universität Bonn, Germany

Based on work with K. Choi, A. Falkowski, M. Olechowski, S. Pokorski, hep-th/0411066, hep-th/0503216, hep-ph/0702146

O. Lebedev, Y. Mambrini, V. Loewen, M. Ratz, hep-th0603047, hep-0612035

Outline

- Basic questions: moduli stabilization and Susy breakdown: Fluxes and Gaugino Condensation
- A large and a little hierarchy
- Mirage Mediation
- Distinct pattern of soft terms
- Some remarks on fine tuning
- Explicit schemes KKLT and LNR
- Robust prediction for gaugino masses
- The Gaugino Code
- Conclusions and outlook

Two Basic Questions

- how to obtain Susy breakdown at a small scale?
- stabilization of moduli?

Two Basic Questions

- how to obtain Susy breakdown at a small scale?
- stabilization of moduli?

Are the masses of moduli connected to Susy breakdown? Relevant moduli are

- \bullet Dilaton (S)
- Kähler (T_i) and complex structure moduli (Z_{α})

Two Basic Questions

- how to obtain Susy breakdown at a small scale?
- stabilization of moduli?

Are the masses of moduli connected to Susy breakdown? Relevant moduli are

- \bullet Dilaton (S)
- Kähler (T_i) and complex structure moduli (Z_{α})
- Other moduli are needed.
- They might come from Chern-Simons terms, additional matter fields, hidden sectors.....

Fluxes and gaugino condensation

Is there a general pattern of the soft mass terms?

We always have (from flux and gaugino condensate)

$$W =$$
something $-\exp(-X)$

where "something" is small and X is moderately large.

Fluxes and gaugino condensation

Is there a general pattern of the soft mass terms?

We always have (from flux and gaugino condensate)

$$W =$$
something $- \exp(-X)$

where "something" is small and X is moderately large.

In fact in this simple scheme

$$X \sim \log(M_{\rm Planck}/m_{3/2})$$

providing a "little" hierarchy.

(Choi, Falkowski, HPN, Olechowski, Pokorski, 2004)

Mixed Modulus Anomaly Mediation

The contribution from "Modulus Mediation" is therefore suppressed by the factor

$$X \sim \log(M_{\rm Planck}/m_{3/2})$$

Numerically this factor is given by: $X \sim 4\pi^2$.

Mixed Modulus Anomaly Mediation

The contribution from "Modulus Mediation" is therefore suppressed by the factor

$$X \sim \log(M_{\rm Planck}/m_{3/2})$$

Numerically this factor is given by: $X \sim 4\pi^2$.

Thus the contribution due to "Anomaly Mediation" (suppressed by a loop factor) becomes competitive, leading to a Mixed Modulus-Anomaly-Mediation scheme.

For reasons that will be explained later we call this scheme

MIRAGE MEDIATION

(Loaiza, Martin, HPN, Ratz, 2005)

The little hierarchy

$$m_X \sim \langle X \rangle m_{3/2} \sim \langle X \rangle^2 m_{\rm soft}$$

is a generic signal of such a scheme

(Choi, Falkowski, HPN, Olechowski, 2005)

The little hierarchy

$$m_X \sim \langle X \rangle m_{3/2} \sim \langle X \rangle^2 m_{\rm soft}$$

is a generic signal of such a scheme

(Choi, Falkowski, HPN, Olechowski, 2005)

- moduli and gravitino are heavy
- gaugino mass spectrum is compressed

The little hierarchy

$$m_X \sim \langle X \rangle m_{3/2} \sim \langle X \rangle^2 m_{\rm soft}$$

is a generic signal of such a scheme

(Choi, Falkowski, HPN, Olechowski, 2005)

- moduli and gravitino are heavy
- gaugino mass spectrum is compressed
- such a situation occurs if for some reason the Susy breaking is "sequestered"

Mirage Unification

Mirage Mediation provides a

characteristic pattern of soft breaking terms.

Mirage Unification

Mirage Mediation provides a

characteristic pattern of soft breaking terms.

To see this, let us consider the gaugino masses

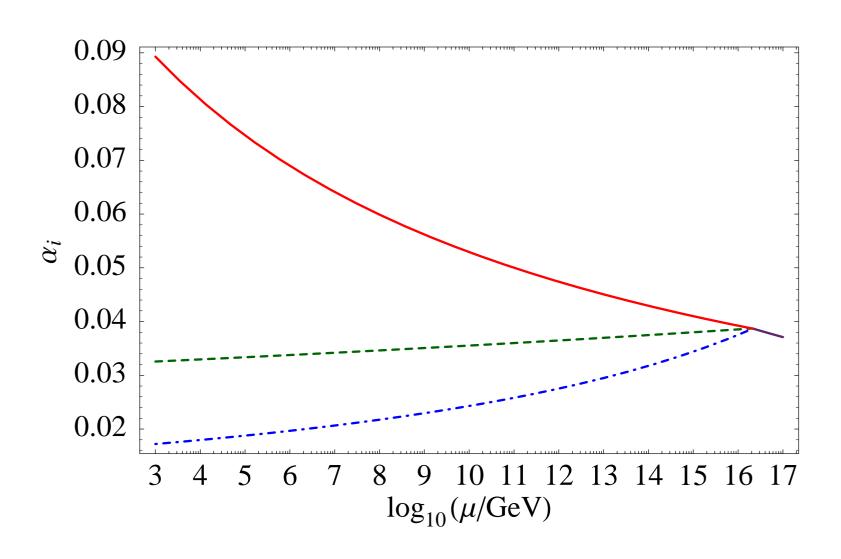
$$M_{1/2} = M_{\text{modulus}} + M_{\text{anomaly}}$$

as a sum of two contributions of comparable size.

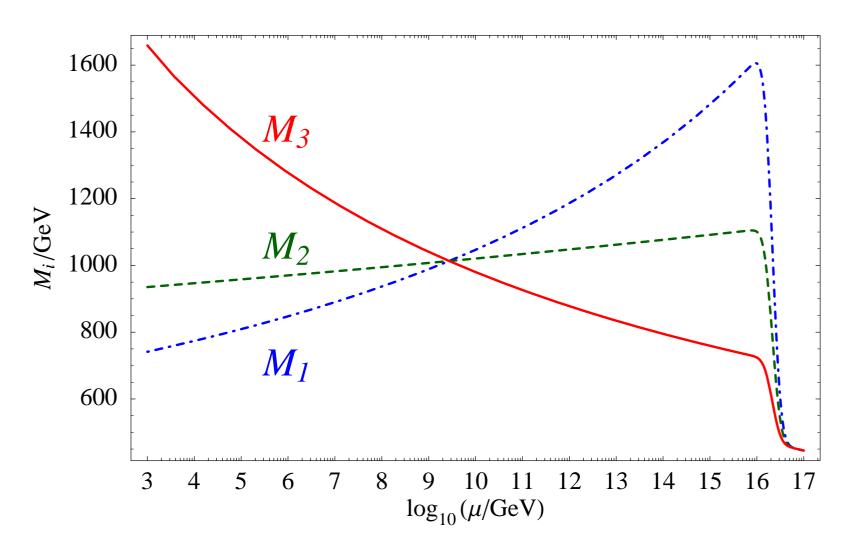
Mirage Unification

Mirage Mediation provides a

characteristic pattern of soft breaking terms.


To see this, let us consider the gaugino masses

$$M_{1/2} = M_{\text{modulus}} + M_{\text{anomaly}}$$


as a sum of two contributions of comparable size.

- M_{anomaly} is proportional to the β function, i.e. negative for the gluino, positive for the bino
- thus M_{anomaly} is non-universal below the GUT scale

Evolution of couplings

The Mirage Scale

(Lebedev, HPN, Ratz, 2005)

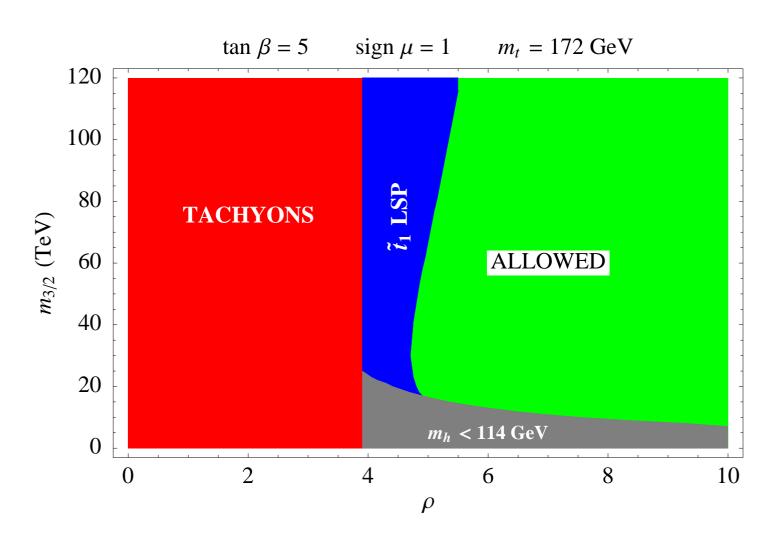
The Mirage Scale (II)

The gaugino masses coincide

- above the GUT scale
- at the mirage scale $\mu_{\rm mirage} = M_{\rm GUT} \exp(-8\pi^2/\rho)$

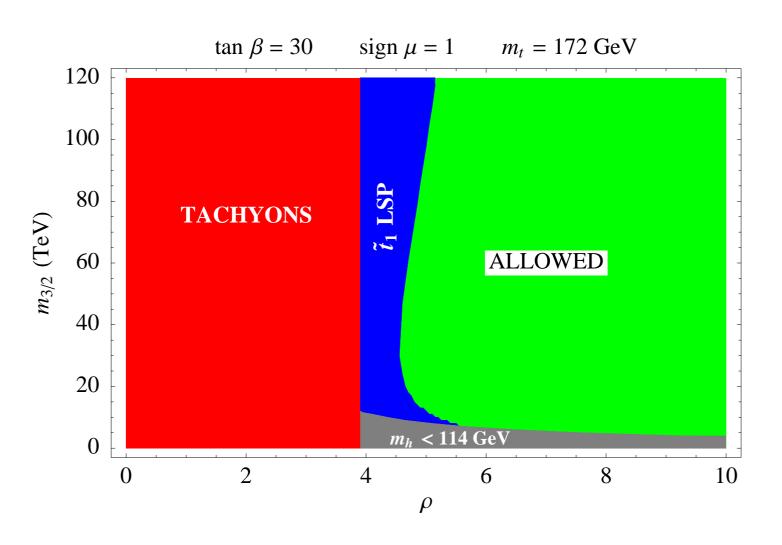
The Mirage Scale (II)

The gaugino masses coincide


- above the GUT scale
- \blacksquare at the mirage scale μ

$$\mu_{\text{mirage}} = M_{\text{GUT}} \exp(-8\pi^2/\rho)$$

where ρ denotes the "ratio" of the contribution of modulus vs. anomaly mediation. We write the gaugino masses as


$$M_a = M_s(\rho + b_a g_a^2) = \frac{m_{3/2}}{16\pi^2} (\rho + b_a g_a^2)$$

and $\rho \to 0$ corresponds to pure anomaly mediation.

(Löwen, HPN, Ratz, 2006)

Constraints on ρ

(Löwen, HPN, Ratz, 2006)

The "MSSM hierarchy problem"

The scheme predicts a rather high mass scale

- multi-TeV for the gravitino
- rather high mass for the LSP-Neutralino

The "MSSM hierarchy problem"

The scheme predicts a rather high mass scale

- multi-TeV for the gravitino
- rather high mass for the LSP-Neutralino

Thus we might worry about a fine-tuning to obtain

the mass of the weak scale around 100 GeV from

$$\frac{m_Z^2}{2} = -\mu^2 + \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta - 1} ,$$

and there are large corrections to $m_{H_u}^2$

(Choi, Jeong, Kobayashi, Okumura, 2005)

The "MSSM hierarchy problem" solved?

The influence of the various soft terms is given by

$$m_Z^2 \simeq -1.8 \,\mu^2 + 5.9 \,M_3^2 - 0.4 \,M_2^2 - 1.2 \,m_{H_u}^2 + 0.9 \,m_{q_L^{(3)}}^2 + 0.7 \,m_{u_R^{(3)}}^2 - 0.6 \,A_t \,M_3 + 0.4 \,M_2 \,M_3 + \dots$$

The "MSSM hierarchy problem" solved?

The influence of the various soft terms is given by

$$m_Z^2 \simeq -1.8 \,\mu^2 + 5.9 \,M_3^2 - 0.4 \,M_2^2 - 1.2 \,m_{H_u}^2 + 0.9 \,m_{q_L^{(3)}}^2 + 0.7 \,m_{u_R^{(3)}}^2 - 0.6 \,A_t \,M_3 + 0.4 \,M_2 \,M_3 + \dots$$

Mirage mediation improves the situation

- especially for small ρ
- because of a reduced gluino mass

(Choi, Jeong, Kobayashi, Okumura, 2005)

explicit model building required

(Lebedev, HPN, Ratz, 2005; Pierce, Thaler, 2006)

Explicit schemes I

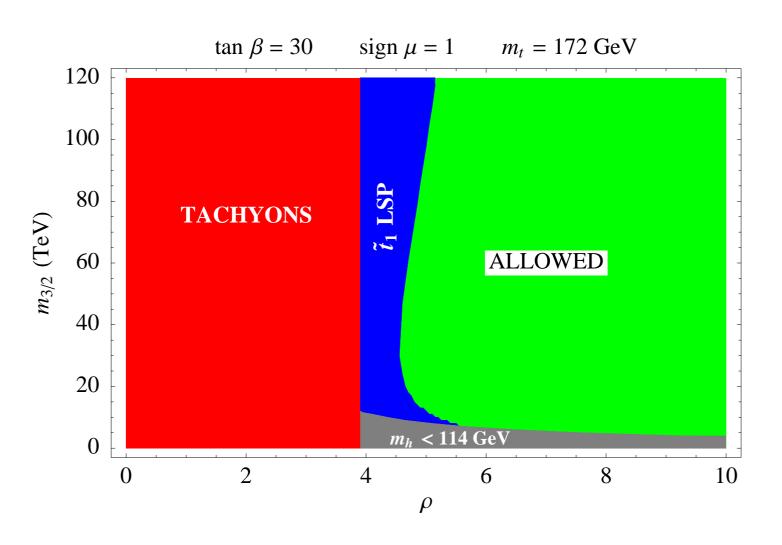
The different schemes depend on the mechanism of uplifting:

uplifting with anti D3 branes

(Kachru, Kallosh, Linde, Trivedi, 2003)

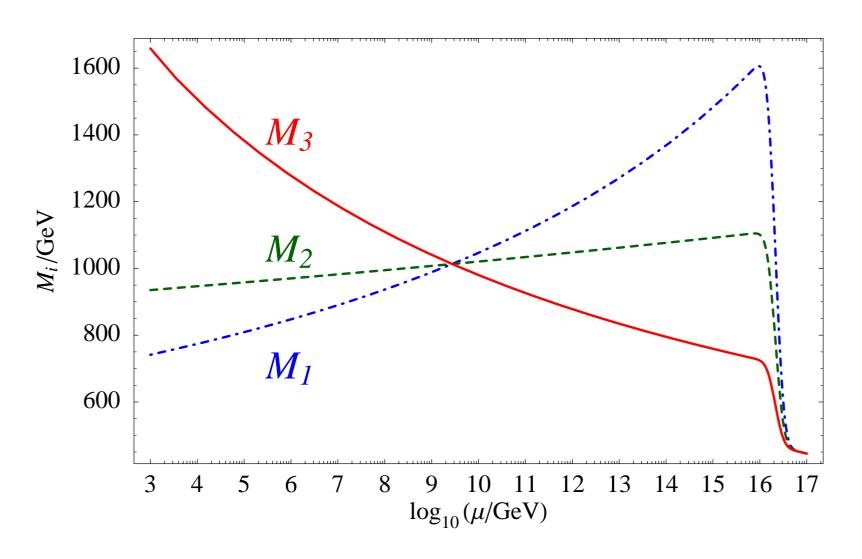
- $\rho \sim 5$ in the original KKLT scenario leading to
- a mirage scale of approximately 10¹¹ GeV

Explicit schemes I


The different schemes depend on the mechanism of uplifting:

uplifting with anti D3 branes

(Kachru, Kallosh, Linde, Trivedi, 2003)


- $\rho \sim 5$ in the original KKLT scenario leading to
- a mirage scale of approximately 10¹¹ GeV
- This scheme leads to pure mirage mediation:
 - gaugino masses and
 - scalar masses
- both meet at a common mirage scale

Constraints on ρ

(Löwen, HPN, Ratz, 2006)

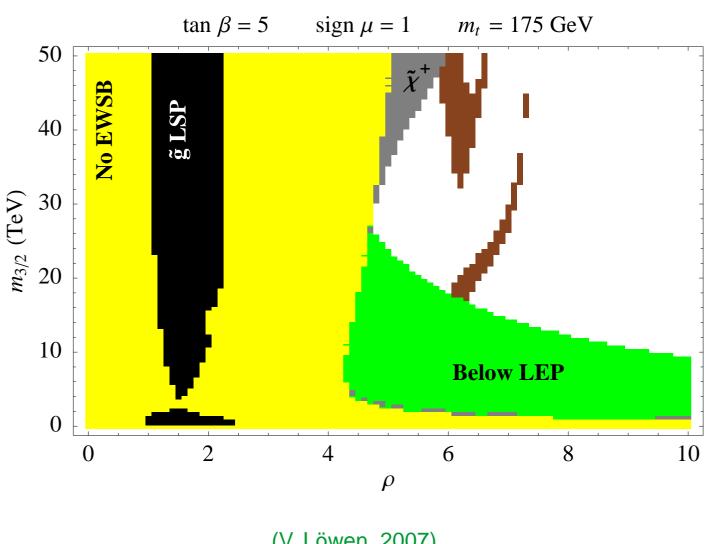
The Mirage Scale

(Lebedev, HPN, Ratz, 2005)

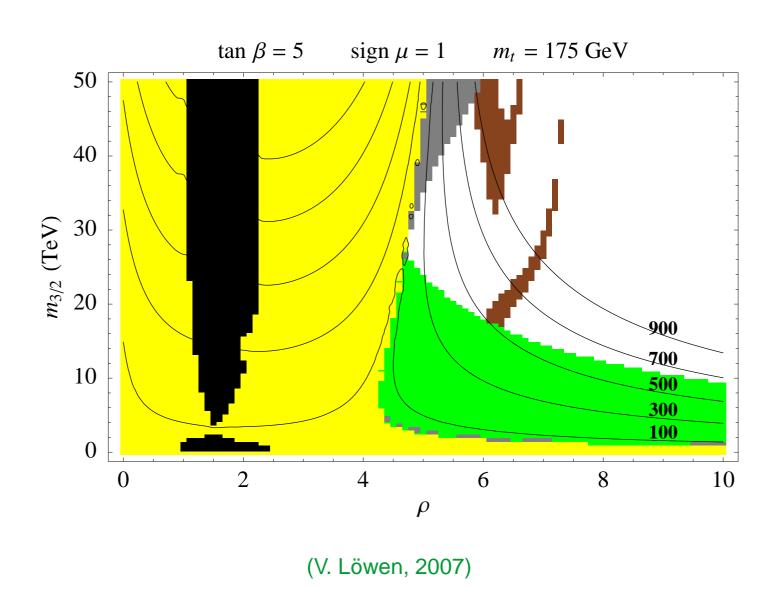
Explicit schemes II

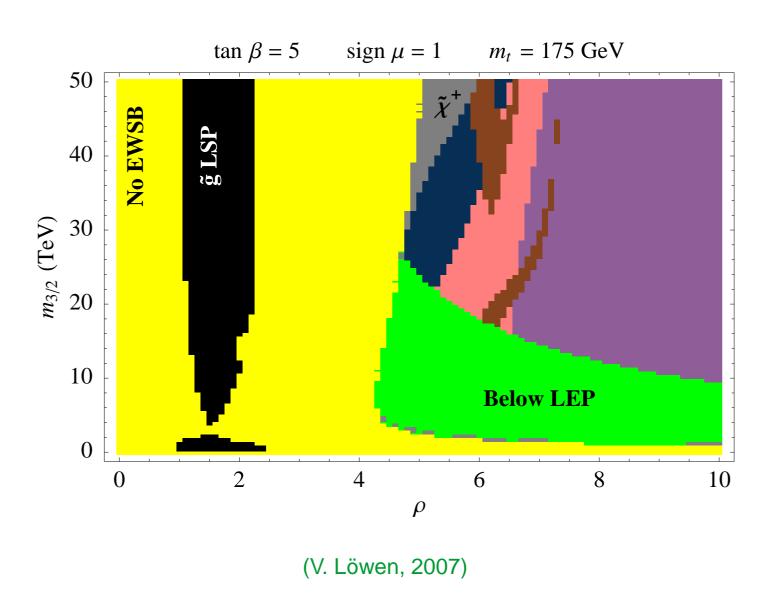
uplifting via matter superpotentials

(Lebedev, HPN, Ratz, 2006)


- allows a continuous variation of ρ
- leads to potentially new contributions to sfermion masses

Explicit schemes II


uplifting via matter superpotentials


(Lebedev, HPN, Ratz, 2006)

- allows a continuous variation of ρ
- leads to potentially new contributions to sfermion masses
- gaugino masses still meet at a mirage scale
- soft scalar masses might be dominated by modulus mediation
- similar constraints on the mixing parameter

(V. Löwen, 2007)

Explicit schemes III

 This "relaxed" mirage mediation is rather common for schemes with F-term uplifting

(Gomez-Reino, Scrucca; Dudas, Papineau, Pokorski; Abe, Higaki, Kobayashi, Omura;

Lebedev, Löwen, Mambrini, HPN, Ratz ,2006)

although "pure" mirage mediation is possible as well

Explicit schemes III

 This "relaxed" mirage mediation is rather common for schemes with F-term uplifting

(Gomez-Reino, Scrucca; Dudas, Papineau, Pokorski; Abe, Higaki, Kobayashi, Omura; Lebedev, Löwen, Mambrini, HPN, Ratz ,2006)

although "pure" mirage mediation is possible as well

Main message

 predictions for gaugino masses are more robust than those for sfermion masses

mirage pattern for gaugino masses rather generic

Obstacles to D-term uplifting

In supergravity we have the relation

$$D \sim \frac{F}{W}$$

which implies that KKLT AdS minimum cannot be uplifted via D-terms.

(Choi, Falkowski, HPN, Olechowski, 2005)

Obstacles to D-term uplifting

In supergravity we have the relation

$$D \sim \frac{F}{W}$$

which implies that KKLT AdS minimum cannot be uplifted via D-terms.

(Choi, Falkowski, HPN, Olechowski, 2005)

Moreover in these schemes we have

$$F \sim m_{3/2} M_{\rm Planck}$$
 and $D \sim m_{3/2}^2$.

So if $m_{3/2} \ll M_{\rm Planck}$ the D-terms are irrelevant.

(Choi, Jeong, 2006)

How can we test these ideas at the LHC?

Look for pattern of gaugino masses

Let us consider the

- low energy spectrum of the MSSM
- measured values of gauge coupling constants

$$g_1^2:g_2^2:g_3^2\simeq 1:2:6$$

How can we test these ideas at the LHC?

Look for pattern of gaugino masses

Let us consider the

- low energy spectrum of the MSSM
- measured values of gauge coupling constants

$$g_1^2: g_2^2: g_3^2 \simeq 1:2:6$$

The evolution of gauge couplings would then lead to unification at a GUT-scale around $10^{16}~{\rm GeV}$

Observe that

- evolution of gaugino masses is tied to evolution of gauge couplings
- for MSSM M_a/g_a^2 does not run (at one loop)

Observe that

- evolution of gaugino masses is tied to evolution of gauge couplings
- for MSSM M_a/g_a^2 does not run (at one loop)
- if there are no strong threshold corrections at the high scale
- robust prediction for gaugino masses
- gaugino mass relations are the key to reveal the underlying scheme

3 characteristic patterns

(Choi, HPN, 2007)

mSUGRA Pattern

Universal gaugino mass at the GUT scale

mSUGRA pattern:

$$M_1: M_2: M_3 \simeq 1: 2: 6 \simeq g_1^2: g_2^2: g_3^2$$

as realized in popular schemes such as gravity-, modulus-, gauge- and gaugino-mediation

mSUGRA Pattern

Universal gaugino mass at the GUT scale

mSUGRA pattern:

$$M_1: M_2: M_3 \simeq 1: 2: 6 \simeq g_1^2: g_2^2: g_3^2$$

as realized in popular schemes such as gravity-, modulus-, gauge- and gaugino-mediation

This leads to

- LSP χ_1^0 predominantly Bino
- $M_{\rm gluino}/m_{\chi_1^0} \simeq 6$

as a characteristic signature of these schemes.

Anomaly Pattern

Gaugino masses below the GUT scale determined by the β functions

anomaly pattern:

```
M_1: M_2: M_3 \simeq 3.3:1:9
```

at the TeV scale as the signal of anomaly mediation.

Anomaly Pattern

Gaugino masses below the GUT scale determined by the β functions

anomaly pattern:

$$M_1: M_2: M_3 \simeq 3.3:1:9$$

at the TeV scale as the signal of anomaly mediation.

For the gauginos, this implies

- LSP χ_1^0 predominantly Wino
- $M_{\rm gluino}/m_{\chi_1^0} \simeq 9$

Pure anomaly mediation inconsistent, as sfermion masses are problematic in this scheme (tachyonic sleptons).

Mirage Pattern

Mixed boundary conditions at the GUT scale characterized by the parameter ρ (the ratio of anomaly to modulus mediation).

```
• M_1: M_2: M_3 \simeq 1: 1.3: 2.5 for \rho \simeq 5
```

•
$$M_1: M_2: M_3 \simeq 1:1:1$$
 for $\rho \simeq 2$

Mirage Pattern

Mixed boundary conditions at the GUT scale characterized by the parameter ρ (the ratio of anomaly to modulus mediation).

- $M_1: M_2: M_3 \simeq 1: 1.3: 2.5$ for $\rho \simeq 5$
- $M_1: M_2: M_3 \simeq 1:1:1$ for $\rho \simeq 2$

The mirage scheme leads to

- LSP χ_1^0 predominantly Bino
- $M_{\rm gluino}/m_{\chi_1^0} < 6$
- a "compact" gaugino mass pattern.

Mirage Mediation naturally appears in string theory models with background fluxes and gaugino condensation. It

- relieves cosmological problems of moduli and gravitino
- reduces the fine tuning of the weak scale
- gives a consistent neutralino dark matter candidate

Mirage Mediation naturally appears in string theory models with background fluxes and gaugino condensation. It

- relieves cosmological problems of moduli and gravitino
- reduces the fine tuning of the weak scale
- gives a consistent neutralino dark matter candidate

Mirage mediation

- avoids the problems of conventional schemes like anomaly and modulus mediation
- is the correct way to implement anomaly mediation
- gives a consistent picture with very few parameters

The source of Mirage Mediation is the appearance of a small parameter

$$X^{-1} \sim \log(m_{3/2}/M_{\rm Planck})$$

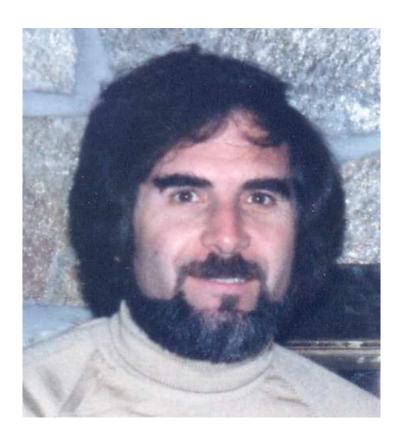
that leads to a (heavy) superpartner spectrum exhibiting

- a little hierarchy $m_X \sim \langle X \rangle m_{3/2} \sim \langle X \rangle^2 m_{\rm soft}$
- a rather heavy gravitino mass
- and an unusual relation between the gaugino masses.

The source of Mirage Mediation is the appearance of a small parameter

$$X^{-1} \sim \log(m_{3/2}/M_{\rm Planck})$$

that leads to a (heavy) superpartner spectrum exhibiting


- a little hierarchy $m_X \sim \langle X \rangle m_{3/2} \sim \langle X \rangle^2 m_{\rm soft}$
- a rather heavy gravitino mass
- and an unusual relation between the gaugino masses.

Mirage Mediation provides a distinct pattern of soft terms that could be tested at the LHC!

Happy Birthday

Happy Birthday

All the best for 60 + 60 years

Bonn 2001

Aspen 2004

