Strings and Particle Physics

Hans Peter Nilles

Physikalisches Institut Universität Bonn Germany

Questions

- What can we learn from strings for particle physics?
- Can we incorporate particle physics models within the framework of string theory?

Questions

- What can we learn from strings for particle physics?
- Can we incorporate particle physics models within the framework of string theory?

Recent progress:

- explicit model building towards the MSSM
 - Heterotic brane world
 - local grand unification
- moduli stabilization and Susy breakdown
 - warped throats
 - modulus or mirage mediation

The road to the Standard Model

What do we want?

- gauge group $SU(3) \times SU(2) \times U(1)$
- 3 families of quarks and leptons
- no chiral exotics

The road to the Standard Model

What do we want?

- gauge group $SU(3) \times SU(2) \times U(1)$
- 3 families of quarks and leptons
- no chiral exotics

But there might be more:

- supersymmetry (SM extended to MSSM)
- neutrino masses (see-saw mechanism)

as a hint for a large mass scale around 10^{16} GeV

Grand Unification

SUSY-GUTs provide us with nice things like

- unified multiplets (e.g. spinors of SO(10))
- gauge coupling unification
- Yukawa unification
- neutrino see-saw mechanism

Grand Unification

SUSY-GUTs provide us with nice things like

- unified multiplets (e.g. spinors of SO(10))
- gauge coupling unification
- Yukawa unification
- neutrino see-saw mechanism

But there remain a few difficulties:

- breakdown of GUT group (large representations)
- doublet-triplet splitting problem (incomplete multiplets)
- proton stability (need for R-parity)

Local Grand Unification

Can such things come from string theory where it is notoriously difficult to obtain large representations (beyond the adjoint representation of the gauge group)?

Local Grand Unification

Can such things come from string theory where it is notoriously difficult to obtain large representations (beyond the adjoint representation of the gauge group)?

In fact string theory gives us a variant of GUTs

- complete multiplets for fermion families
- split multiplets for gauge- and Higgs-bosons
- partial Yukawa unification

in a geometrical set-up known as local GUTs, realized in the framework of the "heterotic braneworld".

(Förste, HPN, Vaudrevange, Wingerter, 2004)

Localization

Quarks, Leptons and Higgs fields can be localized:

- in the Bulk (d = 10 untwisted sector)
- on 3-Branes (d = 4 twisted sector fixed points)
- on 5-Branes (d = 6 twisted sector fixed tori)

Localization

Quarks, Leptons and Higgs fields can be localized:

- in the Bulk (d = 10 untwisted sector)
- on 3-Branes (d = 4 twisted sector fixed points)
- on 5-Branes (d = 6 twisted sector fixed tori)

but there is also a "localization" of gauge fields

- $E_8 \times E_8$ in the bulk
- smaller gauge groups on various branes

Observed 4-dimensional gauge group is common subroup of the various localized gauge groups!

Localized Gauge Symmetries

(Förste, HPN, Vaudrevange, Wingerter, 2004)

Standard Model Gauge Group

The Remnants of SO(10)

- > SO(10) is realized in the higher dimensional theory
- broken in d=4
- coexistence of complete and incomplete multiplets

The Remnants of SO(10)

- > SO(10) is realized in the higher dimensional theory
- broken in d=4
- coexistence of complete and incomplete multiplets

Still there could be remnants of SO(10) symmetry

- 16 of SO(10) at some branes
- correct hypercharge normalization
- R-parity

that are very useful for realistic model building ...

Benchmark Scenario: Z_6 II orbifold

(Kobayashi, Raby, Zhang, 2004; Buchmüller, Hamaguchi, Lebedev, Ratz, 2004)

- provides fixed points and fixed tori
- allows SO(10) gauge group
- allows for localized 16-plets for 2 families
- ullet SO(10) broken via Wilson lines
- nontrivial hidden sector gauge group

Selection Strategy

criterion	$V^{SO(10),1}$	$V^{SO(10),2}$
2 models with 2 Wilson lines	22,000	7,800
③ SM gauge group ⊂ SO(10)	3563	1163
@ 3 net families	1170	492
5 gauge coupling unification	528	234
6 no chiral exotics	128	90

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2006)

The road to the MSSM

The benchmark scenario leads to

- 200 models with the exact spectrum of the MSSM (absence of chiral exotics)
- local grand unification (by construction)
- gauge- and (partial) Yukawa unification

(Raby, Wingerter, 2007)

examples of neutrino see-saw mechanism

(Buchmüller, Hamguchi, Lebedev, Ramos-Sanchez, Ratz, 2007)

• models with R-parity + solution to the μ -problem

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2007)

hidden sector gaugino condensation

Hidden Sector Susy Breakdown

$$m_{3/2} = \Lambda^3/M_{\rm Planck}^2$$
 (with $\Lambda = \mu \exp(-1/g_{\rm hidden}^2(\mu))$) from hidden sector gaugino condensation

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2006)

Two Basic Questions

- origin of the small scale?
- stabilization of moduli?

Two Basic Questions

- origin of the small scale?
- stabilization of moduli?

Recent progress in

moduli stabilization via fluxes in warped compactifications of Type IIB string theory

(Dasgupta, Rajesh, Sethi, 1999; Giddings, Kachru, Polchinski, 2001)

 generalized flux compactifications of heterotic string theory

(Becker, Becker, Dasgupta, Prokushkin, 2003; Gurrieri, Lukas, Micu, 2004)

combined with gaugino condensates and "uplifting"

(Kachru, Kallosh, Linde, Trivedi, 2003)

Fluxes and gaugino condensation

Is there a general pattern of the soft mass terms?

We have (from warped flux and gaugino condensate)

$$W =$$
something $- \exp(-X)$

where "something" is small and X is moderately large.

Fluxes and gaugino condensation

Is there a general pattern of the soft mass terms?

We have (from warped flux and gaugino condensate)

$$W = \text{something} - \exp(-X)$$

where "something" is small and X is moderately large.

In fact in this simple scheme

$$X \sim \log(M_{\rm Planck}/m_{3/2})$$

providing a "little" hierarchy.

(Choi, Falkowski, HPN, Olechowski, Pokorski, 2004)

Mixed Modulus Anomaly Mediation

The contribution from "Modulus Mediation" is therefore suppressed by the factor

$$X \sim \log(M_{\rm Planck}/m_{3/2})$$

Numerically this factor is given by: $X \sim 4\pi^2$.

Mixed Modulus Anomaly Mediation

The contribution from "Modulus Mediation" is therefore suppressed by the factor

$$X \sim \log(M_{\rm Planck}/m_{3/2})$$

Numerically this factor is given by: $X \sim 4\pi^2$.

Thus the contribution due to "Anomaly Mediation" (suppressed by a loop factor) becomes competitive, leading to a Mixed Modulus-Anomaly-Mediation scheme.

For reasons that will be explained later we call this scheme

MIRAGE MEDIATION

(Loaiza, Martin, HPN, Ratz, 2005)

The little hierarchy

$$m_X \sim \langle X \rangle m_{3/2} \sim \langle X \rangle^2 m_{\rm soft}$$

is a generic signal of such a scheme

- moduli and gravitino are heavy
- gaugino mass spectrum is compressed

(Choi, Falkowski, HPN, Olechowski, 2005; Endo, Yamaguchi, Yoshioka, 2005;

Choi, Jeong, Okumura, 2005)

such a situation occurs if SUSY breaking is "sequestered" on a warped throat

(Kachru, McAllister, Sundrum, 2007)

Mirage Unification

Mirage Mediation provides a

characteristic pattern of soft breaking terms.

(Choi, Jeong, Okumura, 2005)

Gaugino masses receive two contributions

$$M_{1/2} = M_{\text{modulus}} + M_{\text{anomaly}}$$

of comparable size.

- M_{anomaly} is proportional to the β function, i.e. negative for the gluino, positive for the bino
- thus M_{anomaly} is non-universal below the GUT scale

Evolution of couplings

The Mirage Scale

The Mirage Scale (II)

The gaugino masses coincide

- above the GUT scale
- at the mirage scale

$$\mu_{\text{mirage}} = M_{\text{GUT}} \exp(-8\pi^2/\rho)$$

where ρ denotes the "ratio" of the contribution of modulus vs. anomaly mediation. We write the gaugino masses as

$$M_a = M_s(\rho + b_a g_a^2) = \frac{m_{3/2}}{16\pi^2} (\rho + b_a g_a^2)$$

and $\rho \to 0$ corresponds to pure anomaly mediation.

Constraints on the mixing parameter

(Löwen, HPN, Ratz, 2006)

The "MSSM hierarchy problem"?

The influence of the various soft terms is given by

$$m_Z^2 \simeq -1.8 \,\mu^2 + 5.9 \,M_3^2 - 0.4 \,M_2^2 - 1.2 \,m_{H_u}^2 + 0.9 \,m_{q_L^{(3)}}^2 + 0.7 \,m_{u_R^{(3)}}^2 - 0.6 \,A_t \,M_3 + 0.4 \,M_2 \,M_3 + \dots$$

The "MSSM hierarchy problem"?

The influence of the various soft terms is given by

$$m_Z^2 \simeq -1.8 \,\mu^2 + 5.9 \,M_3^2 - 0.4 \,M_2^2 - 1.2 \,m_{H_u}^2 + 0.9 \,m_{q_L^{(3)}}^2 + 0.7 \,m_{u_R^{(3)}}^2 - 0.6 \,A_t \,M_3 + 0.4 \,M_2 \,M_3 + \dots$$

Mirage mediation improves the situation

- especially for small ρ
- because of a reduced gluino mass and a "compressed" spectrum of supersymmetric partners

(Choi, Jeong, Kobayashi, Okumura, 2005)

explicit model building required

(Kitano, Nomura, 2005; Lebedev, HPN, Ratz, 2005; Pierce, Thaler, 2006;

Dermisek, Kim, 2006)

Explicit schemes I

The different schemes depend on the mechanism of uplifting:

- uplifting with anti-D3 branes (Kachru, Kallosh, Linde, Trivedi, 2003)
 - $\rho \sim 5$ in the original KKLT scenario leading to
 - a mirage scale of approximately 10¹¹ GeV

This scheme leads to "pure" mirage mediation:

- gaugino masses and
- scalar masses

both meet at a common mirage scale.

Explicit schemes II

uplifting via matter superpotentials

(Lebedev, HPN, Ratz, 2006)

- allows a continuous variation of ρ
- leads to potentially new contributions for sfermion masses
- gaugino masses still meet at a mirage scale
- soft scalar masses might be dominated by modulus mediation
- similar constraints on the mixing parameter as in previous scheme

Constraints on the mixing parameter

Strings and Particle Physics, SUSY07 - p.26/33

Explicit schemes III

This "relaxed" mirage mediation is rather common for schemes with F-term uplifting

(Gomez-Reino, Scrucca; Dudas, Papineau, Pokorski; Abe, Higaki, Kobayashi, Omura;

Lebedev, Löwen, Mambrini, HPN, Ratz, 2006)

although "pure" mirage mediation is possible as well

Explicit schemes III

This "relaxed" mirage mediation is rather common for schemes with F-term uplifting

(Gomez-Reino, Scrucca; Dudas, Papineau, Pokorski; Abe, Higaki, Kobayashi, Omura; Lebedev, Löwen, Mambrini, HPN, Ratz, 2006)

although "pure" mirage mediation is possible as well

Main messages

- predictions for gaugino masses are more robust than those for sfermion masses
- mirage pattern for gaugino masses rather generic

The Gaugino Code

How can we test these ideas at the LHC?

Look for pattern of gaugino masses

Let us assume the

- low energy particle content of the MSSM
- measured values of gauge coupling constants

$$g_1^2: g_2^2: g_3^2 \simeq 1:2:6$$

The evolution of gauge couplings would then lead to unification at a GUT-scale around 10^{16} GeV

The Gaugino Code

Observe that

- evolution of gaugino masses is tied to evolution of gauge couplings
- for MSSM M_a/g_a^2 does not run (at one loop)

This implies

- robust prediction for gaugino masses
- gaugino mass relations are the key to reveal the underlying scheme

3 CHARACTERISTIC MASS PATTERNS

(Choi, HPN, 2007)

mSUGRA Pattern

Universal gaugino mass at the GUT scale

mSUGRA pattern:

$$M_1: M_2: M_3 \simeq 1: 2: 6 \simeq g_1^2: g_2^2: g_3^2$$

as realized in popular schemes such as gravity-, modulus-, gauge- and gaugino-mediation

This leads to

- LSP χ_1^0 predominantly Bino
- $M_{\rm gluino}/m_{\chi_1^0} \simeq 6$

as a characteristic signature of these schemes.

Anomaly Pattern

Gaugino masses below the GUT scale determined by the β functions

anomaly pattern:

$$M_1:M_2:M_3\simeq 3.3:1:9$$

at the TeV scale as the signal of anomaly mediation.

For the gauginos, this implies

- LSP χ_1^0 predominantly Wino
- $M_{\rm gluino}/m_{\chi_1^0} \simeq 9$

Pure anomaly mediation inconsistent, as sfermion masses are problematic in this scheme (tachyonic sleptons).

Mirage Pattern

Mixed boundary conditions at the GUT scale characterized by the parameter ρ (the ratio of anomaly to modulus mediation).

- $M_1: M_2: M_3 \simeq 1: 1.3: 2.5$ for $\rho \simeq 5$
- $M_1: M_2: M_3 \simeq 1:1:1$ for $\rho \simeq 2$

The mirage scheme leads to

- LSP χ_1^0 predominantly Bino
- $M_{\rm gluino}/m_{\chi_1^0} < 6$
- a "compressed" gaugino mass pattern.

Conclusion

String theory provides us with new ideas for particle physics model building, leading to concepts such as

- Local Grand Unification
- Mirage Mediation and a compressed SUSY spectrum

Geometry of extra dimensions plays a crucial role:

- localization of fields on branes,
- presence of warped throats

LHC might help us to verify some of these ideas!