Unification of fundamental interactions

Hans Peter Nilles

Physikalisches Institut Universität Bonn

Unification of fundamental interactions, Aspen, August 2014 – p. 1/45

Standard Model

We have a standard model of elementary particle physics. It is based on

- gauge symmetries $SU(3) \times SU(2) \times U(1)$
- three families of quarks and leptons
- a scalar Higgs boson

It is extremely successful,

- but there are many free parameters
- and some open questions.

Is there physics beyond the standard model?

Outline

- The Standard Model (SM)
- Three basic questions
- Reasons to go beyond the SM
- Grand unification and supersymmetry
- Extra dimensions and "Local Grand Unification"
- Some group theory: The beauty of SO(10)
- Strong motivation for E_8
- Extra dimensions from String Theory
- How to test?

History

- Gravity 1915
- Quantum Electrodynamics (QED) ca. 1950
- Yang-Mills theory for weak interactions 1954
- "Higgs" mechanism 1964
- Electroweak standard model 1967
- Renormalizability of nonabelian gauge theories ca. 1972
- Quantum chromodynamics (QCD) ca. 1973
- Discovery of gauge bosons W^{\pm} and Z^0 1983
- Discovery of Higgs boson 2012

Standard Model

A family of quarks and leptons

The gauge group is $SU(3) \times SU(2) \times U(1)_Y$

$$(u_{\alpha}, d_{\alpha})_{Y=1/6}$$
 $(\nu_e, e)_{Y=-1/2}$

$$(\bar{u}_{\alpha})_{Y=-2/3} \qquad (\bar{e})_{Y=1}$$

$$(\bar{d}_{\alpha})_{Y=1/3}$$

with $\alpha = 1, 2, 3$ the SU(3)-index. Observe that

$$\sum_{i} Y_i = 0 \qquad \text{and} \qquad \sum_{i} Y_i^3$$

= 0

A family of quarks and leptons

The gauge group is $SU(3) \times SU(2) \times U(1)_Y$

$$(u_{\alpha}, d_{\alpha})_{Y=1/6}$$
 $(\nu_e, e)_{Y=-1/2}$

$$(\bar{u}_{\alpha})_{Y=-2/3} \qquad (\bar{e})_{Y=1}$$

$$(\bar{d}_{\alpha})_{Y=1/3} \qquad (\bar{\nu})_{Y=0}$$

with $\alpha = 1, 2, 3$ the SU(3)-index. Observe that

$$\sum_{i} Y_i = 0 \qquad \text{and} \qquad \sum_{i} Y_i^3$$

= 0

Three basic questions

Some fundamental questions remain unanswered

- The origin of the structure of a family?
- Why three copies ? Question of I. Rabi: who ordered the muon?
- Why gauge group $SU(3) \times SU(2) \times U(1)$?

and require physics beyond the Standard Model.

Three basic questions

Some fundamental questions remain unanswered

- The origin of the structure of a family?
- Why three copies ? Question of I. Rabi: who ordered the muon?
- Why gauge group $SU(3) \times SU(2) \times U(1)$?

and require physics beyond the Standard Model. Some other reasons to go beyond the SM

- dark matter of the universe
- baryon asymmetry, neutrino oscillations
- "Landau Pole" of electromagnetic U(1)

The Quest for Unification

Grand Unification

Embed the SM gauge group

- into a single grand unified group!
- examples are SU(5) and SO(10).

Grand Unification

Embed the SM gauge group

- into a single grand unified group!
- examples are SU(5) and SO(10).

But there are a few obstacles:

- "equality" of gauge coupling constants
- the "doublet-triplet" splitting problem
- the breakdown of the grand unified gauge group.

Standard Model

Supersymmetric SM

Susy thresholds

New particles

Supersymmetry

Unification of matter and radiation

- consistent with grand unification
- stabilizes the weak scale
- provides candidates for dark matter
- allows for a mechanism of baryogenesis

Supersymmetry

Unification of matter and radiation

- consistent with grand unification
- stabilizes the weak scale
- provides candidates for dark matter
- allows for a mechanism of baryogenesis

Preferred grand unified gauge groups

- SO(10) and SU(5) include $SU(3) \times SU(2) \times U(1)$
- explain the structure of families of quarks and leptons
 - $\overline{5} + 10$ representations of SU(5)
 - 16-dimensional spinor representation of SO(10)

Binary code for quarks and leptons

$$(n_1, n_2, n_3, n_4, n_5)$$
 with $n_i = 0, 1$ and $\sum_i n_i = \text{even}$

- (1,1,1,1,0) 5 combinations
 (1,1,0;1,1) \bar{d} (1,1,1;0,1) (ν_e,e)
- **9** (1, 1, 0, 0, 0) **10 combinations**
 - (1, 1, 0; 0, 0)• (1, 0, 0; 1, 0) \overline{u} (u, d)
 - (0, 0, 0; 1, 1)
- (0, 0, 0, 0, 0) **1** combination

 \overline{e}

 $\overline{\nu}_e$

Basic questions: where are we?

We have made some pogress.

- The origin of the structure of a family: answer is 16-dim. spinor representation of SO(10)
- Why three copies: not known yet, but group theory is proven to be unsuccessful.
- Why $SU(3) \times SU(2) \times U(1)$: is replaced by: why SO(10)?

Basic questions: where are we?

We have made some pogress.

- The origin of the structure of a family: answer is 16-dim. spinor representation of SO(10)
- Why three copies: not known yet, but group theory is proven to be unsuccessful.
- Why $SU(3) \times SU(2) \times U(1)$: is replaced by: why SO(10)?

Reminder: still some problems with grand unification:

- evolution of couplings requires supersymmetry
- "doublet-triplet" splitting
- breakdown of grand unified group

Why SO(10): Dynkin diagrams

Lie groups come in 4 infinite series SU(N), SP(2N), SO(2N+1), SO(2N) and 5 exceptional groups.

Not all of them are useful for grand unification as they do not provide chiral representations to explain parity violation of weak interactions.

Simply Laced Lie Groups

Maximal Group E_8

<u>о-о-о-о-о</u>

 E_8 is the maximal group.

There are, however, no chiral representations in d = 4.

Unification of fundamental interactions, Aspen, August 2014 - p. 20/45

Next smaller is E_7 .

No chiral representations in d = 4 either.

 E_6 allows for chiral representations even in d = 4.

<u>о-о-о-о</u>

 $E_{5} = D_{5}$

E_5 is usually not called exceptional. It coincides with $D_5 = SO(10)$.

 $E_4 = A_4$

о-о-о

 E_4 coincides with $A_4 = SU(5)$.

Unification of fundamental interactions, Aspen, August 2014 - p. 24/45

E_3 coincides with $A_2 \times A_1$ which is $SU(3) \times SU(2)$.

Unification of fundamental interactions, Aspen, August 2014 - p. 25/45

Strong motivation for E_8

 E_8 would require higher dimensions

- E_8 is strongly motivated from string theory ($E_8 \times E_8$ heterotic string and M/F theory)
- E_8 has chiral representations in d = 8n + 2
- String theory requires d = 10
- E_8 broken in process of compactification (e.g. to E_5)

Strong motivation for E_8

 E_8 would require higher dimensions

- E_8 is strongly motivated from string theory ($E_8 \times E_8$ heterotic string and M/F theory)
- E_8 has chiral representations in d = 8n + 2
- String theory requires d = 10
- E_8 broken in process of compactification (e.g. to E_5)

Extra dimensions allow for the concept of "Local Grand Unification":

- this solves the doublet-triplet splitting problem
- and provides the breakdown of the GUT group.

Local Grand Unification

The Quest for Unification

Three basic questions, again

Some basic questions are answered.

- The origin of the structure of a family: answer is 16-dim representation of SO(10)
- Why three copies: topological properties of compactified extra dimensions
- Why SO(10)? It is the grand-grand daughter E_5 of E_8 .
- Local Grand unification: allows for "incomplete multiplets"

Three basic questions, again

Some basic questions are answered.

- The origin of the structure of a family: answer is 16-dim representation of SO(10)
- Why three copies: topological properties of compactified extra dimensions
- Why SO(10)? It is the grand-grand daughter E_5 of E_8 .
- Local Grand unification: allows for "incomplete multiplets"

Answers require physics beyond the SM!

We need new experimental input.

Physics beyond the SM

Standard model is incomplete

- problems with unification
- dark matter
- baryogenesis
- inclusion of gravity

Physics beyond the SM

Standard model is incomplete

- problems with unification
- dark matter
- baryogenesis
- inclusion of gravity

There must be new physics somewhere.

- Where is it?
- Is it at the TeV scale?
- Why is there no signal yet at the LHC?

LHC and physics beyond SM

Strong constraints on MSSM from 126 GeV Higgs mass. The coloured regions are excluded while the hatched region indicates the current reach of the LHC.

Pre-LHC expectations

Constraints on MSSM from the Higgs mass. The coloured regions are excluded while the hatched region indicates the current reach of the LHC.

LHC and physics beyond SM

Strong constraints on MSSM from 126 GeV Higgs mass. The coloured regions are excluded while the hatched region indicates the current reach of the LHC.

Benchmark model

The quest for "Precision Susy"

Two important arguments for supersymmetry

- solution to the hierarchy problem
- gauge coupling unification

We want to take these two arguments as serious as possible and reanalyze the MSSM within this scheme. We make two assumptions:

- demand precision gauge unification
- require smallest supersymmetric masses possible

What are the consequences for the search at LHC?

Susy thresholds

Precision gauge unification

$$\frac{1}{g_i^2(M_{\rm GUT})} = \frac{1}{g_i^2(M_Z)} - \frac{b_i^{\rm MSSM}}{8\pi^2} \ln\left(\frac{M_{\rm GUT}}{M_Z}\right) + \frac{1}{g_{i,\rm Thr}^2}$$

Low scale thresholds:

$$\frac{1}{g_{i,\text{Thr}}^{2}} = \frac{b_{i}^{\text{MSSM}} - b_{i}^{\text{SM}}}{8\pi^{2}} \ln\left(\frac{M_{\text{SUSY}}}{M_{Z}}\right)$$

The measure for gauge unification:

$$\epsilon_3 \; = \; \frac{g_3^2(M_{\rm GUT}) - g_{1,2}^2(M_{\rm GUT})}{g_{1,2}^2(M_{\rm GUT})}$$

Unification versus M_{SUSY}

M_{SUSY} should thus be in the few-TeV range.

The Susy-Scale

If all supersymmetric partners have the same mass M, then $M_{SUSY} = M$. For non-universal masses we have an effective scale:

$$M_{\rm SUSY} \sim \frac{m_{\widetilde{W}}^{32/19} \, m_{\widetilde{h}}^{12/19} \, m_{H}^{3/19}}{m_{\widetilde{g}}^{28/19}} \, X_{\rm sfermion}$$

with

$$X_{\text{sfermion}} = \prod_{i=1...3} \left(\frac{m_{\widetilde{L}^{(i)}}^{3/19}}{m_{\widetilde{D}^{(i)}}^{3/19}} \right) \left(\frac{m_{\widetilde{Q}_{L}^{(i)}}^{7/19}}{m_{\widetilde{Q}_{L}^{(i)}}^{2/19} m_{\widetilde{U}^{(i)}}^{5/19}} \right)$$

LHC limits are weak

Dark Matter Relic Density

Distribution of thermal neutralino relic density for the benchmark sample with (solid) or without (dashed) the assumption of precision gauge coupling unification.

LHC limits are weak

Limits from direct detection

Direct detection experiments might check the scheme.

Conclusions

The quest for unification of fundamental interactions

requires new physics beyond the Standard Model: like e.g. supersymmetry and extra dimensions

Basic questions could be answered

- family as a 16-dim spinor of SO(10)
- SO(10) as the grand-grand daughter of E_8
- extra dimensions explain repetition of families

Consequences:

we need new experimental input to test the ideas!

The LHC shows us where to go

