Title: From Strings to the MSSM

Date: 2008-06-05 09:35:00

Abstract:

# From Strings to the MSSM

Hans Peter Nilles

Bethe Center for Theoretical Physics
Universität Bonn
Germany



## Questions

- What can we learn from strings for particle physics?
- Can we incorporate particle physics models within the framework of string theory?

### Questions

- What can we learn from strings for particle physics?
- Can we incorporate particle physics models within the framework of string theory?

#### Recent progress:

- explicit model building towards the MSSM
  - Heterotic brane world
  - local grand unification
- moduli stabilization and Susy breakdown
  - fluxes and gaugino condensation
  - mirage mediation

### The road to the Standard Model

#### What do we want?

- ullet gauge group  $SU(3) \times SU(2) \times U(1)$
- 3 families of quarks and leptons
- scalar Higgs doublet

### The road to the Standard Model

#### What do we want?

- ullet gauge group  $SU(3) \times SU(2) \times U(1)$
- 3 families of quarks and leptons
- scalar Higgs doublet

#### But there might be more:

- supersymmetry (SM extended to MSSM)
- neutrino masses and mixings

as a hint for a large mass scale around 1016 GeV

### Indirect evidence

Experimental findings suggest the existence of two new scales of physics beyond the standard model

$$M_{\rm GUT} \sim 10^{16} {\rm GeV}$$
 (and  $M_{\rm SUSY} \sim 10^3 {\rm GeV}$ ):

#### Indirect evidence

Experimental findings suggest the existence of two new scales of physics beyond the standard model

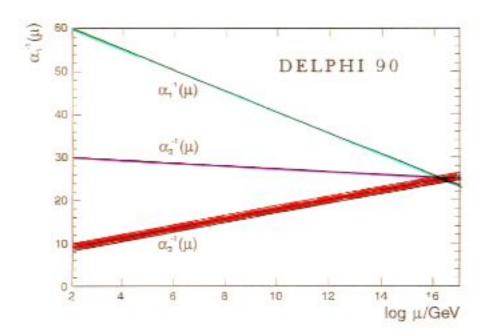
$$M_{\rm GUT} \sim 10^{16} {\rm GeV}$$
 (and  $M_{\rm SUSY} \sim 10^3 {\rm GeV}$ ):

Neutrino-oscillations and "See-Saw Mechanism"

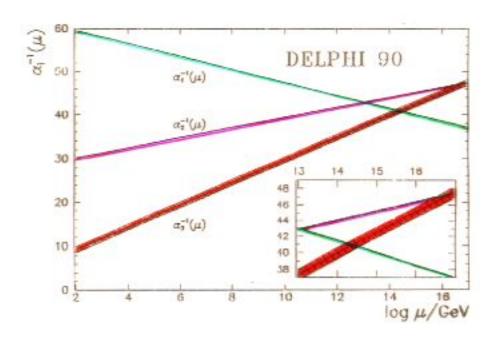
$$m_{\nu} \sim M_W^2 / M_{\rm GUT}$$
  
 $m_{\nu} \sim 10^{-3} {\rm eV} \text{ for } M_W \sim 100 {\rm GeV},$ 

#### Indirect evidence

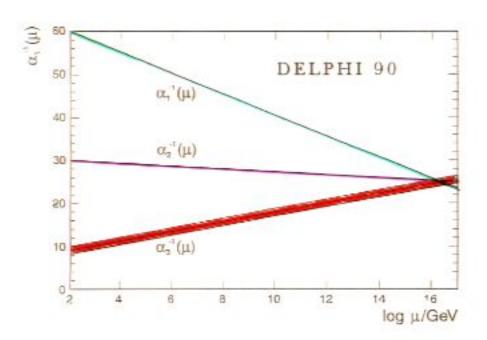
Experimental findings suggest the existence of two new scales of physics beyond the standard model


$$M_{\rm GUT} \sim 10^{16} {\rm GeV}$$
 (and  $M_{\rm SUSY} \sim 10^3 {\rm GeV}$ ):

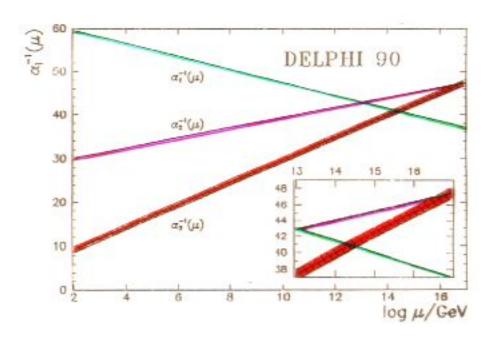
Neutrino-oscillations and "See-Saw Mechanism"


$$m_{\nu} \sim M_W^2 / M_{\rm GUT}$$
  
 $m_{\nu} \sim 10^{-3} {\rm eV} \text{ for } M_W \sim 100 {\rm GeV},$ 

 Evolution of couplings constants of the standard model towards higher energies.







## Standard Model



# MSSM (supersymmetric)



## Standard Model



### **Grand Unification**

#### This leads to SUSY-GUTs with nice things like

- unified multiplets (e.g. spinors of SO(10))
- gauge coupling unification
- Yukawa unification
- neutrino see-saw mechanism

### **Grand Unification**

#### This leads to SUSY-GUTs with nice things like

- unified multiplets (e.g. spinors of SO(10))
- gauge coupling unification
- Yukawa unification
- neutrino see-saw mechanism

#### But there remain a few difficulties:

- breakdown of GUT group (large representations)
- doublet-triplet splitting problem (incomplete multiplets)
- proton stability (need for R-parity)

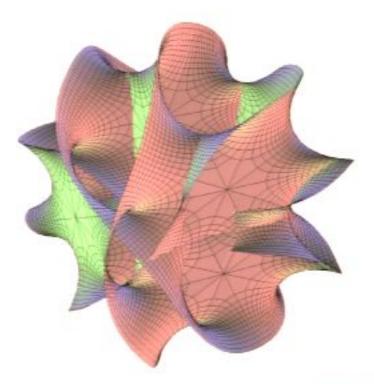
# **String Theory**

#### What do we get from string theory?

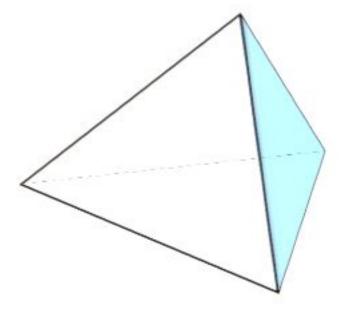
- supersymmetry
- extra spatial dimensions
- large unified gauge groups
- consistent theory of gravity

### **String Theory**

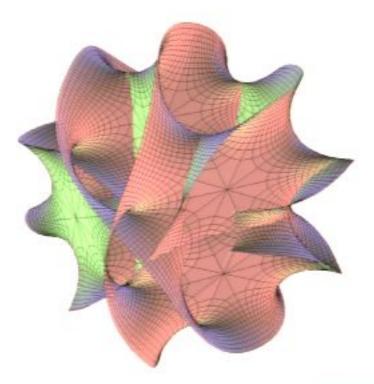
#### What do we get from string theory?


- supersymmetry
- extra spatial dimensions
- large unified gauge groups
- consistent theory of gravity

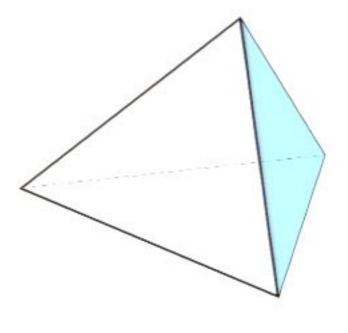
These are the building blocks for a unified theory of all the fundamental interactions.


But do they fit together, and if yes how?

We need to understand the mechanism of compactification of the extra spatial dimensions


## Calabi Yau Manifold




# Orbifold



## Calabi Yau Manifold



# Orbifold



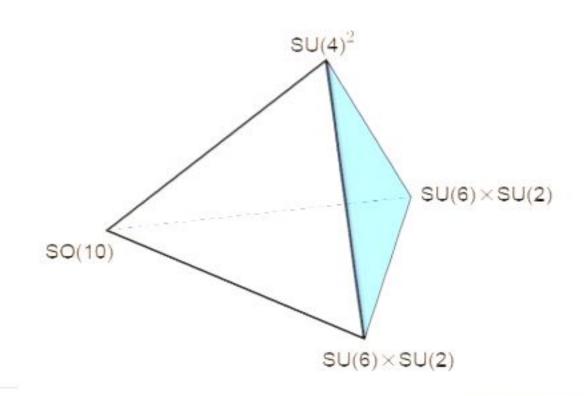
### Localization

#### Quarks, Leptons and Higgs fields can be localized:

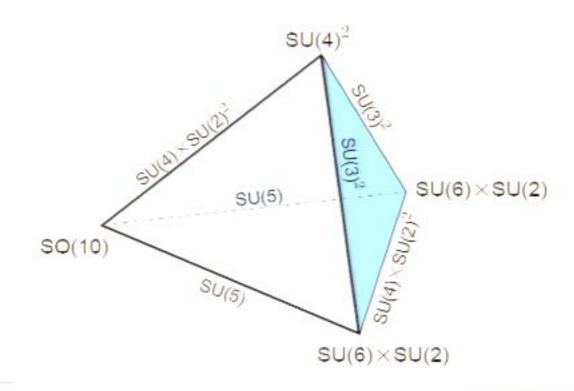
- in the Bulk (d = 10 untwisted sector)
- on 3-Branes (d = 4 twisted sector fixed points)
- on 5-Branes (d = 6 twisted sector fixed tori)

#### Localization

#### Quarks, Leptons and Higgs fields can be localized:


- in the Bulk (d = 10 untwisted sector)
- on 3-Branes (d = 4 twisted sector fixed points)
- on 5-Branes (d = 6 twisted sector fixed tori)

#### but there is also a "localization" of gauge fields


- $\bullet$   $E_8 \times E_8$  in the bulk
- smaller gauge groups on various branes

Observed 4-dimensional gauge group is common subroup of the various localized gauge groups!

# Localized gauge symmetries



# Standard Model Gauge Group



### **Local Grand Unification**

#### In fact string theory gives us a variant of GUTs

- complete multiplets for fermion families
- split multiplets for gauge- and Higgs-bosons
- partial Yukawa unification

### **Local Grand Unification**

#### In fact string theory gives us a variant of GUTs

- complete multiplets for fermion families
- split multiplets for gauge- and Higgs-bosons
- partial Yukawa unification

Key properties of the theory depend on the geography of the fields in extra dimensions.

This geometrical set-up called local GUTs, can be realized in the framework of the "heterotic braneworld".

(Förste, HPN, Vaudrevange, Wingerter, 2004; Buchmüller, Hamaguchi, Lebedev, Ratz, 2004)

# The Remnants of SO(10)

- SO(10) is realized in the higher dimensional theory
- broken in d=1
- coexistence of complete and incomplete multiplets

### The Remnants of SO(10)

- SO(10) is realized in the higher dimensional theory
- broken in d = 1
- coexistence of complete and incomplete multiplets

Still there could be remnants of SO(10) symmetry

- 16 of SO(10) at some branes
- correct hypercharge normalization
- R-parity
- distinction between different families

that are very useful for realistic model building ...

# Benchmark Scenario: $Z_6$ II orbifold



(Kobayashi, Raby, Zhang, 2004; Buchmüller, Hamaguchi, Lebedev, Ratz. 2004)

- provides fixed points and fixed tori
- allows SO(10) gauge group
- allows for localized 16-plets for 2 families
- SO(10) broken via Wilson lines
- nontrivial hidden sector gauge group

### The Remnants of SO(10)

- SO(10) is realized in the higher dimensional theory
- broken in d = 1
- coexistence of complete and incomplete multiplets

Still there could be remnants of SO(10) symmetry

- 16 of SO(10) at some branes
- correct hypercharge normalization
- R-parity
- distinction between different families

that are very useful for realistic model building ...

# Benchmark Scenario: $Z_6$ II orbifold



(Kobayashi, Raby, Zhang, 2004; Buchmüller, Hamaguchi, Lebedev, Ratz. 2004)

- provides fixed points and fixed tori
- allows SO(10) gauge group
- allows for localized 16-plets for 2 families
- SO(10) broken via Wilson lines
- nontrivial hidden sector gauge group

# **Selection Strategy**

| criterion                    | $V^{{ m SO}(10),1}$ | VSO(10):2 |
|------------------------------|---------------------|-----------|
| 2 models with 2 Wilson lines | 22,000              | 7,800     |
| ③ SM gauge group ⊂ SO(10)    | 3563                | 1163      |
| 3 net families               | 1170                | 492       |
| ⑤ gauge coupling unification | 528                 | 234       |
| 6 no chiral exotics          | 128                 | 90        |

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2006)

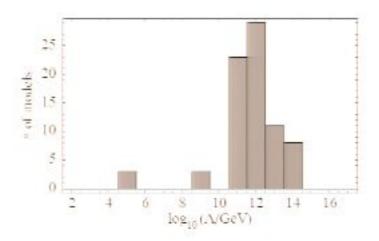
#### The road to the MSSM

#### The benchmark scenario leads to

- 200 models with the exact spectrum of the MSSM (absence of chiral exotics)
- local grand unification (by construction)
- gauge- and (partial) Yukawa unification

(Raby, Wingerter, 2007)

examples of neutrino see-saw mechanism


(Buchmüller, Hamguchi, Lebedev, Ramos-Sanchez, Ratz. 2007)

models with R-parity + solution to the μ-problem

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2007)

hidden sector gaugino condensation

## Hidden Sector Susy Breakdown



 $m_{3/2} = \Lambda^3/M_{\rm Planck}^2$  (with  $\Lambda = \mu \exp(-1/g_{\rm hidden}^2(\mu))$ ) from hidden sector gaugino condensation

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz. Vaudrevange, Wingerter, 2006)

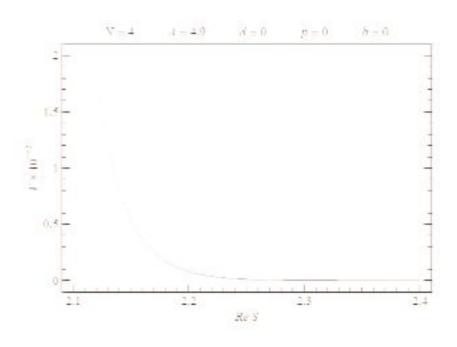
# **Basic Questions**

- origin of the small scale?
- stabilization of moduli?
- adjustment of vacuum energy?

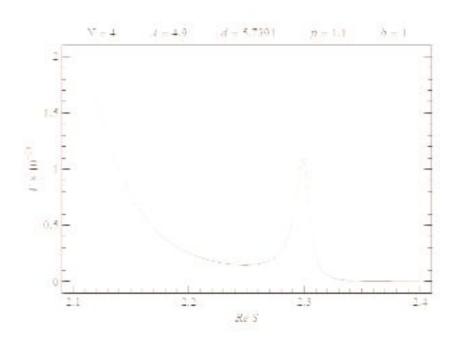
## **Basic Questions**

- origin of the small scale?
- stabilization of moduli?
- adjustment of vacuum energy?

#### Recent progress in

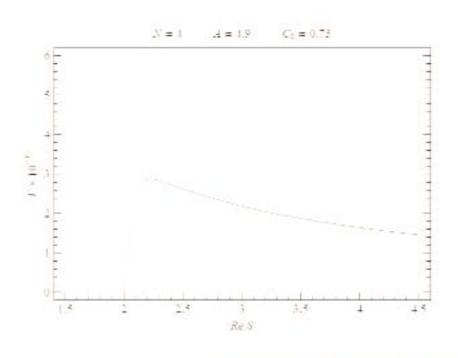

 moduli stabilization via fluxes in warped compactifications of Type IIB string theory

(Dasgupta, Rajesh, Sethi, 1999; Glddings, Kachru, Polchinski, 2001)


 generalized flux compactifications of heterotic string theory

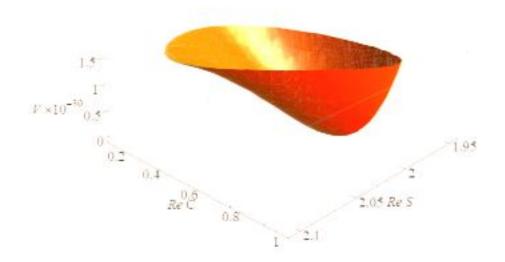
(Becker, Becker, Dasgupta, Prokushkin, 2003; Gurrieri, Lukas, Micu, 2004)






## Corrections to Kähler potential




(Barreiro, de Carlos, Copeland, 1998)





(Lebedev, HPN, Ratz. 2006; Löwen, HPN, 2008)

## Metastable "Minkowski" vacuum



(Lowen, HPN, 2008)

## Fluxes and gaugino condensation

Is there a general pattern of the soft mass terms?

We have (from "flux" and gaugino condensate)

$$W =$$
something  $\exp(-X)$ 

where "something" is small and X is moderately large.

## Fluxes and gaugino condensation

Is there a general pattern of the soft mass terms?

We have (from "flux" and gaugino condensate)

$$W =$$
something  $\exp(-X)$ 

where "something" is small and X is moderately large.

In fact in this simple scheme

$$X \sim \log(M_{\rm Planck}/m_{3/2})$$

providing a "little" hierarchy.

Choi, Faikowski, HPN, Olechowski, Pokorski, 2004)

## **Mixed Modulus Anomaly Mediation**

The universal contribution from "Modulus Mediation" is therefore suppressed by the factor

$$X \sim \log(M_{\rm Planck}/m_{3/2})$$

Numerically this factor is given by:  $X \sim 1\pi^2$ .

### **Mixed Modulus Anomaly Mediation**

The universal contribution from "Modulus Mediation" is therefore suppressed by the factor

 $X \sim \log(M_{\rm Planck}/m_{3/2})$ 

Numerically this factor is given by:  $X \sim 1\pi^2$ .

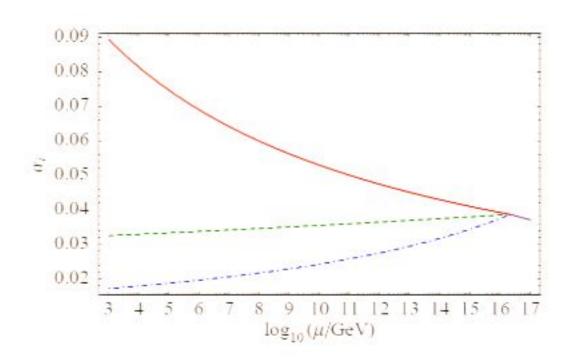
Thus contributions from radiative corrections such as "Anomaly Mediation" become competitive, leading to a Mixed Modulus-Anomaly-Mediation scheme.

For reasons that will be explained later we call this scheme

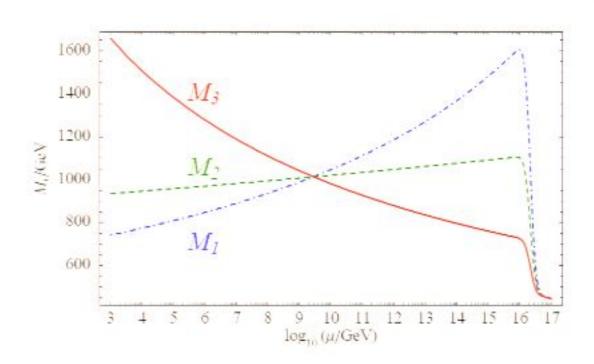
MIRAGE MEDIATION

(Loaiza, Martin, HPN, Ratz, 2005)

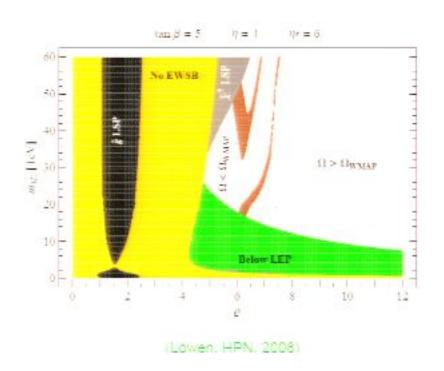
## The little hierarchy


$$m_X \sim \langle X \rangle m_{3/2} \sim \langle X \rangle^2 m_{\rm soft}$$

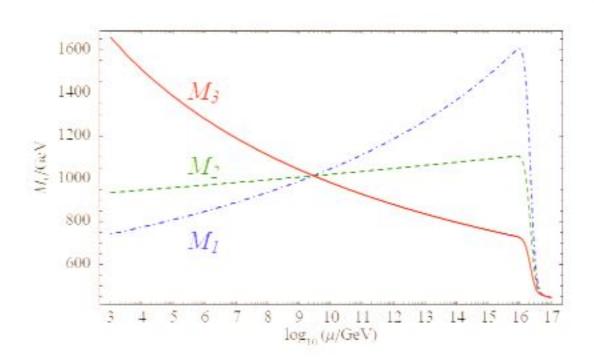
is a generic signal of such a scheme


- moduli and gravitino are heavy
- gaugino mass spectrum is compressed
- mirage unification of gaugino masses

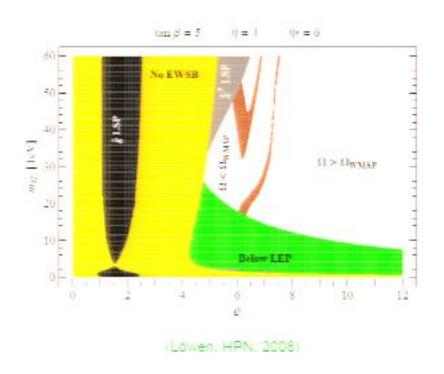
(Choi, Falkowski, HPN, Olechowski, 2005; Endo, Yamaguchi, Yoshioka, 2005; Choi, Jeong, Okumura, 2005)


# **Evolution of couplings**

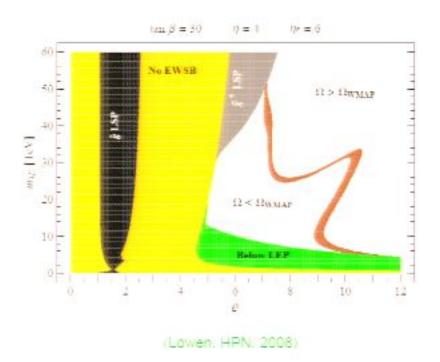



## The Mirage Scale




# Constraints on the mixing parameter








# Constraints on the mixing parameter



# Constraints on the mixing parameter



### Some important messages

#### Please keep in mind:

- the uplifting mechanism plays an important role for the pattern of the soft susy breaking terms
- predictions for gaugino masses are more robust than those for sfermion masses
- dilaton/modulus mediation suppressed in many cases
- mirage pattern for gaugino masses rather generic

## The Gaugino Code

How can we test these ideas at the LHC?

Look for pattern of gaugino masses

Let us assume the

- low energy particle content of the MSSM
- measured values of gauge coupling constants

$$g_1^2: g_2^2: g_3^2 \simeq 1:2:6$$

The evolution of gauge couplings would then lead to unification at a GUT-scale around 10<sup>16</sup> GeV

## The Gaugino Code

#### Observe that

- evolution of gaugino masses is tied to evolution of gauge couplings
- for MSSM  $M_a/g_a^2$  does not run (at one loop)

#### This implies

- robust prediction for gaugino masses
- gaugino mass relations are the key to reveal the underlying scheme

3 CHARACTERISTIC MASS PATTERNS

(Choi, HPN, 2007)

#### mSUGRA Pattern

Universal gaugino mass at the GUT scale

mSUGRA pattern:

$$M_1: M_2: M_3 \simeq 1: 2: 6 \simeq g_1^2: g_2^2: g_3^2$$

as realized in popular schemes such as gravity-, modulus- or dilaton-mediation

This leads to

- LSP \ predominantly Bino
- $M_{\rm gluino}/m_{\chi_{\gamma}^0} \simeq 6$

as a characteristic signature of these schemes.

## **Anomaly Pattern**

Gaugino masses below the GUT scale determined by the 3 functions

anomaly pattern:

$$M_1:M_2:M_3\simeq 3.3:1:9$$

at the TeV scale as the signal of anomaly mediation.

For the gauginos, this implies

- LSP \( \bigcup \quad \text{predominantly Wino} \)
- $M_{\text{gluino}}/m_{\chi_1^0} \simeq 9$

Pure anomaly mediation inconsistent, as sfermion masses are problematic in this scheme (tachyonic sleptons).

## Mirage Pattern

Mixed boundary conditions at the GUT scale characterized by the parameter ρ (the ratio of modulus to anomaly mediation).

• 
$$M_1: M_2: M_3 \simeq 1: 1.3: 2.5$$
 for  $\rho \simeq 5$ 

• 
$$M_1: M_2: M_3 \simeq 1:1:1$$
 for  $\rho \simeq 2$ 

The mirage scheme leads to

- LSP \( \bigcup \text{ predominantly Bino} \)
- $M_{\rm gluino}/m_{\chi^0_2} < 6$
- a "compressed" gaugino mass pattern.

#### Conclusion

String theory provides us with new ideas for particle physics model building, leading to concepts such as

- Local Grand Unification
- Mirage Mediation

Geography of extra dimensions plays a crucial role:

- localization of fields on branes.
- presence of sequestered sectors

LHC might help us to verify some of these ideas!

| Page 60/60 |
|------------|
|------------|