Aligned Natural Inflation

Hans Peter Nilles

Physikalisches Institut Universität Bonn

Outline

- The success of the inflationary Universe
- Flatness of the potential and symmetries
- Natural (axionic) inflation
- Planck satellite data
- BICEP2 observation of a (potential) large tensor mode

But large tensor modes

- require trans-Planckian excursion of inflaton field
- how to control the axion decay constant?

(Kappl, Krippendorf, Nilles, 2014; Kim, Nilles, Peloso, 2004)

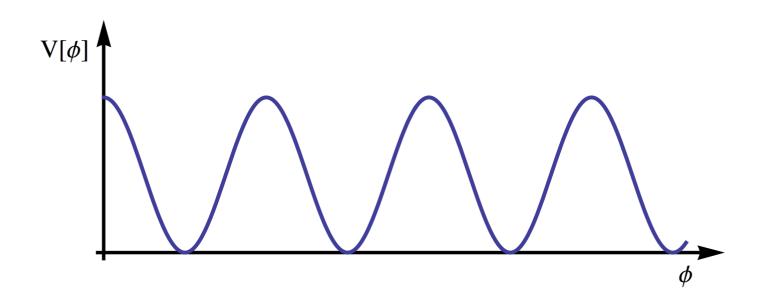
The Quest for Flatness

The mechanism of inflation requires a "flat" potential. Consider

- symmetry reason for flatness of potential
- slightly broken symmetry to move the inflaton

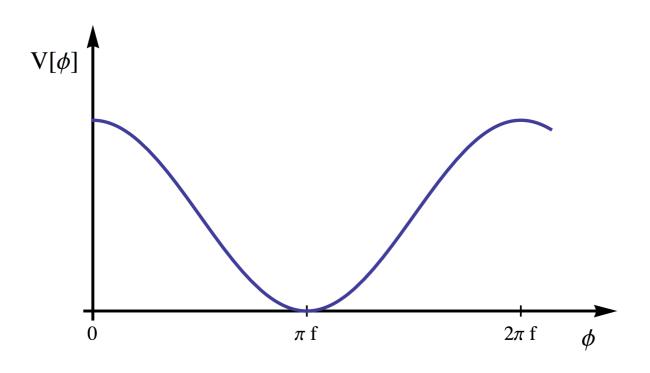
The obvious candidate is axionic inflation

- axion has only derivative couplings to all order in perturbation theory
- broken by non-perturbative effects (instantons)

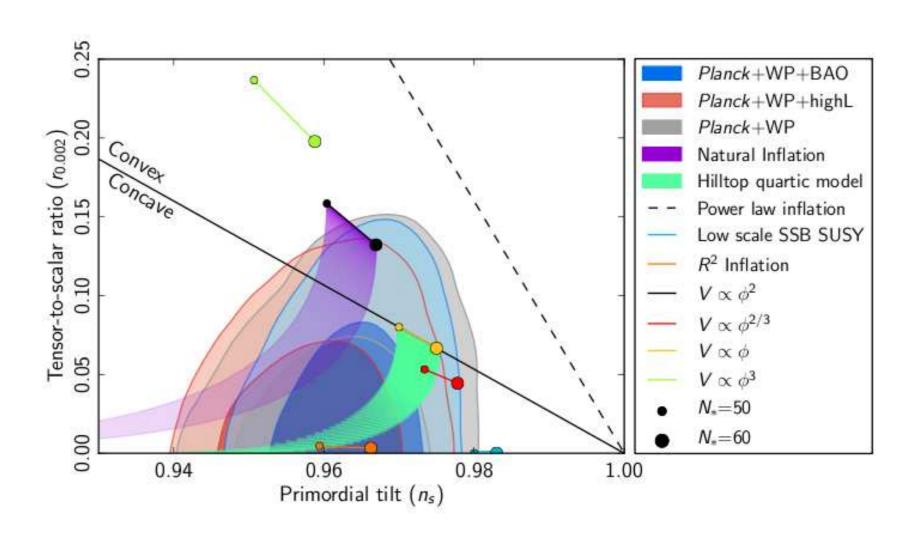

Motivated by the QCD axion

(Freese, Frieman, Olinto, 1990)

The Axion Potential


The axion exhibits a shift symmetry $\phi \rightarrow \phi + c$

Nonperturbative effects break this symmetry to a discrete symmetry

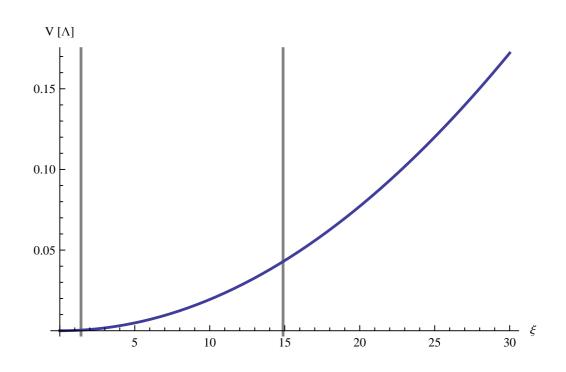

$$V(\phi) = \Lambda^4 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$$

The Axion Potential

$$V(\phi) = \Lambda^4 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$$

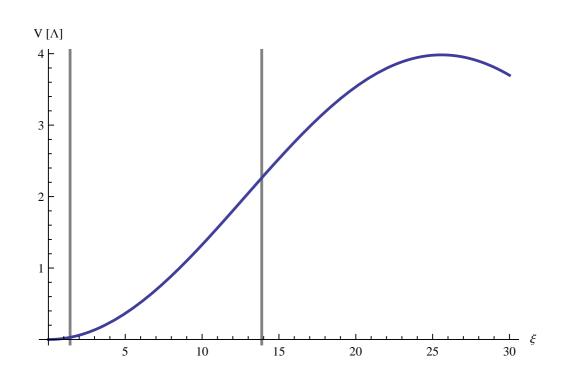
Planck results

News from BICEP2

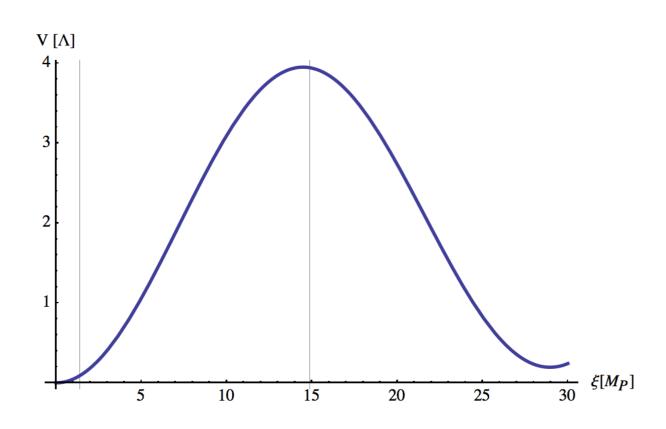

```
Tensor mode r = 0.2^{+0.07}_{-0.05} (after dust reduction r = 0.16^{+0.06}_{-0.05})
```

- this is large compared to the expectation from the Planck satellite (although consistent)
- large tensor modes brings us to scales of physics close to the Planck scale and the so-called "Lyth bound"
- potential $V(\phi)$ of order of GUT scale few $\times 10^{16}$ GeV
- trans-Planckian excursions of the inflaton field

For a quadratic potential $V(\phi) \sim m^2 \phi^2$


• it implies $\Delta \phi \sim 15 M_{\rm P}$ to obtain 60 e-folds of inflation

Range of inflaton field


For the axionic potential this implies a rather large value of the axion decay constant $\pi f \gg M_{\rm P}$

Range of inflaton field

This "trans-Planckian" problem is common to all (single field) models, and in particular to axionic inflation. It is a problem of potential gravitational backreaction.

Range of inflaton field

A decay constant $\pi f \gg M_{\rm P}$ does not necessarily seem to make sense.

Way out

A way out is the consideration of two (or more) fields.

(Kim, Nilles, Peloso, 2004)

- we still want to consider symmetries that keep gravitational corrections under control
- discrete (gauge) symmetries are abundant in explicit string theory constructions (Lebedev et al., 2008; Kappl et al. 2009)
- these are candidates for axionic symmetries
- that could control the gravitational back-reaction
- axions are abundant in string theory

Still: we need $f \leq M_{\rm P}$ for the individual axions

The KNP set-up

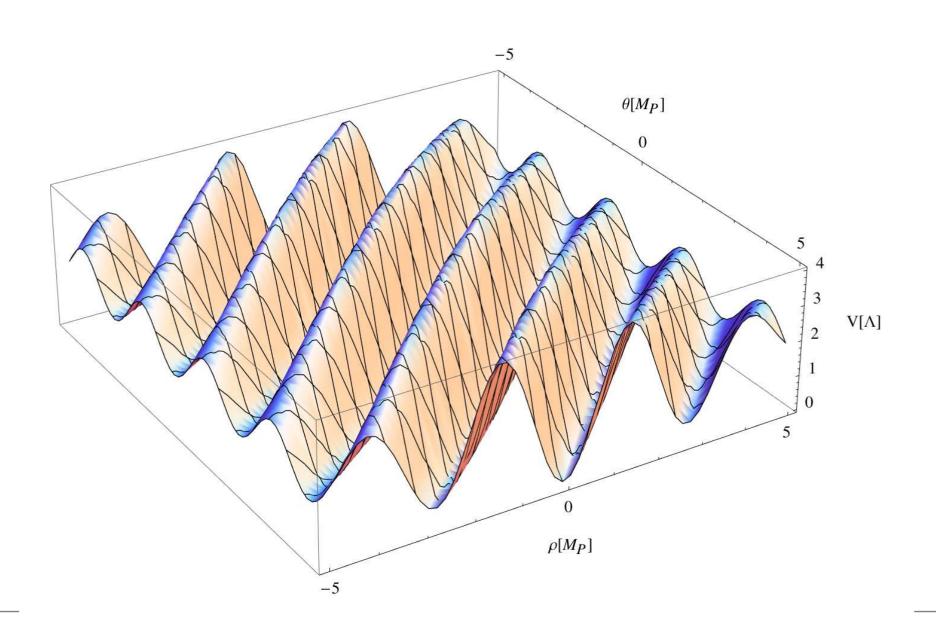
We consider two axions

$$\mathcal{L}(\theta, \rho) = (\partial \theta)^2 + (\partial \rho)^2 - V(\rho, \theta)$$

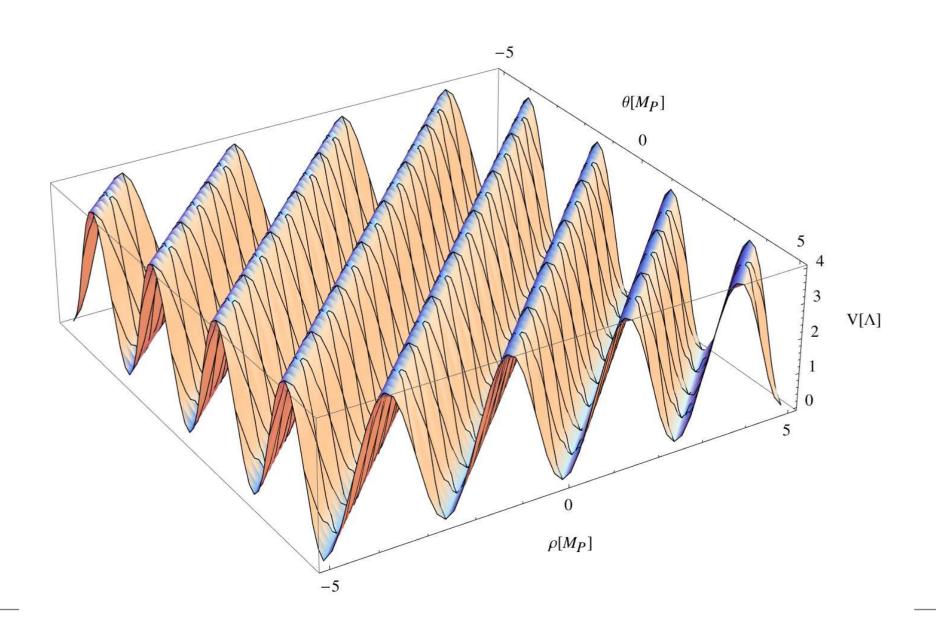
with potential

$$V(\theta, \rho) = \Lambda^4 \left(2 - \cos \left(\frac{\theta}{f_1} + \frac{\rho}{g_1} \right) - \cos \left(\frac{\theta}{f_2} + \frac{\rho}{g_2} \right) \right)$$

This potential has a flat direction if $\frac{f_1}{g_1} = \frac{f_2}{g_2}$


Alignment parameter defined through $\alpha = g_2 - \frac{f_2}{f_1}g_1$

For $\alpha = 0$ we have a massless field ξ .


Potential for $\alpha = 0.3$

Potential for $\alpha = 0.1$

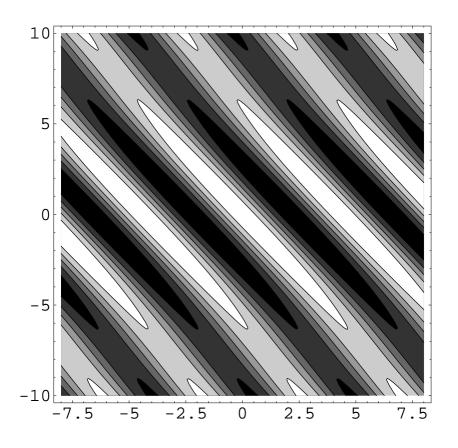
Potential for $\alpha = 0$

The lightest axion

Mass eigenstates are denoted by (ξ, ψ) . The mass eigenvalues are

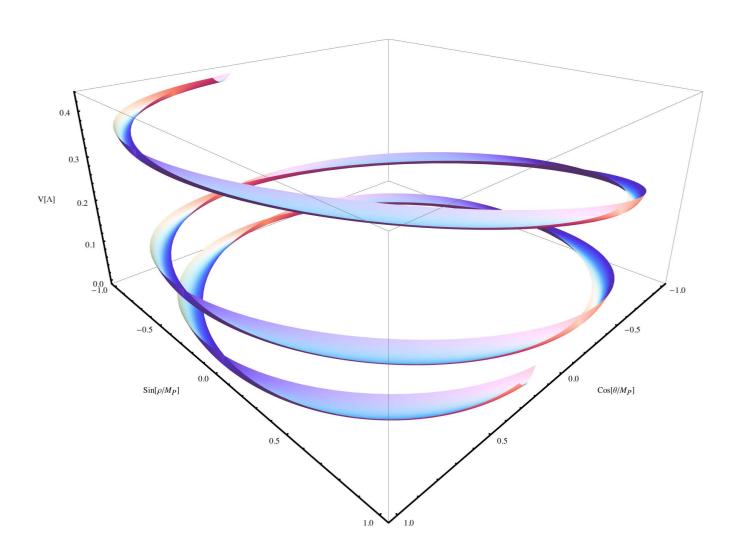
$$\lambda_{1/2} = F \pm \sqrt{F^2 + \frac{2g_1g_2f_1f_2 - f_2^2g_1^2 - f_1^2g_2^2}{f_1^2f_2^2f_1^2g_2^2}}$$

with
$$F = \frac{g_1^2 g_2^2 (f_1^2 + f_2^2) + f_1^2 f_2^2 (g_1^2 + g_2^2)}{2f_1^2 f_2^2 g_1^2 g_2^2}$$

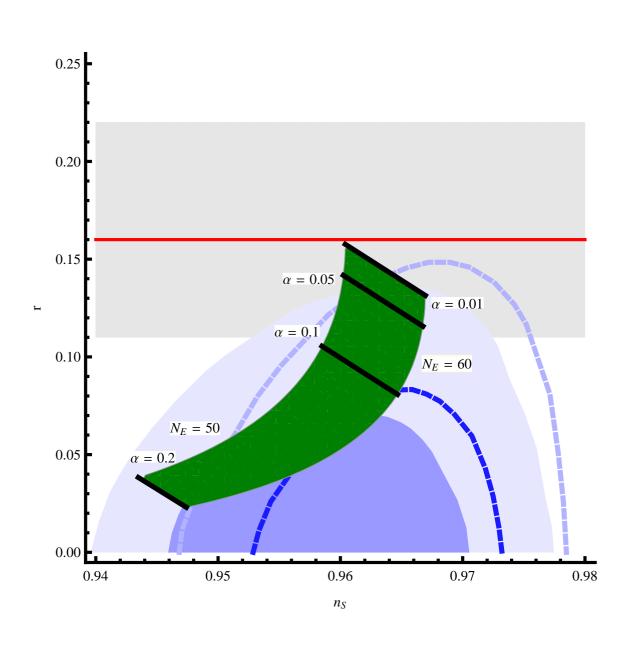

Lightest axion ξ has potential

$$V(\xi) = \Lambda^4 \left[2 - \cos(m_1(f_i, g_1, \alpha)\xi) - \cos(m_2(f_i, g_1, \alpha)\xi) \right]$$

leading effectively to a one-axion system


$$V(\xi) = \Lambda^4 \left[1 - \cos\left(\frac{\xi}{\tilde{f}}\right) \right] \quad \text{with} \quad \tilde{f} = \frac{f_2 g_1 \sqrt{(f_1^2 + f_2^2)(f_1^2 + g_1^2)}}{f_1^2 \alpha}$$

KNP plot


The field ξ rolls within the valley of ψ . The motion of ξ corresponds to a motion of θ and ρ over many cycles.

Rutschbahn

One axion spirals down in the valley of a second one.

The role of α

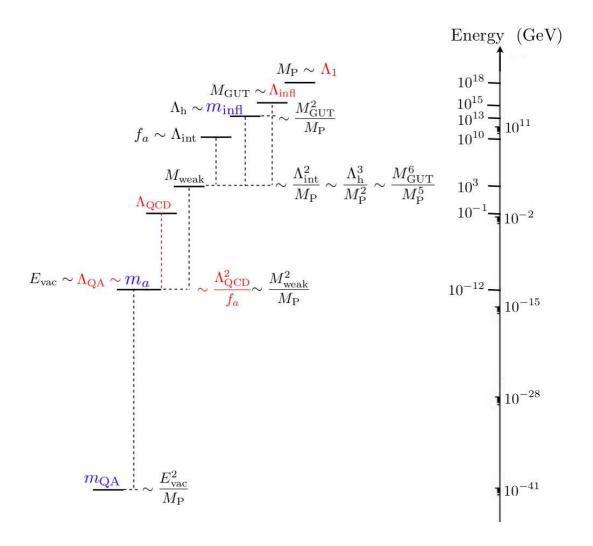
α versus r

The alignment parameter can be determined experimentally

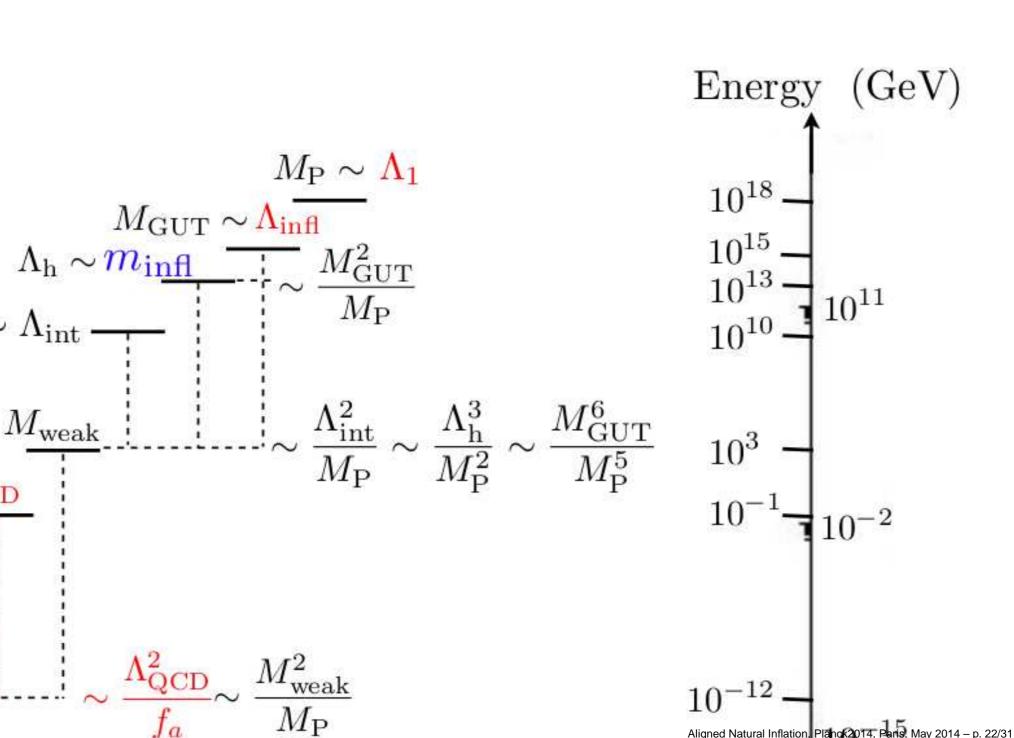
- $r \sim 0.1$ regires $\alpha \sim 0.1$
- large r > 0.1 corresponds to smallish α and might require a fine-tuning
- ightharpoonup r > 0.16 is not possible within the scheme

α versus r

The alignment parameter can be determined experimentally


- $r \sim 0.1$ regires $\alpha \sim 0.1$
- large r > 0.1 corresponds to smallish α and might require a fine-tuning
- ightharpoonup r > 0.16 is not possible within the scheme

So let us wait and see. Large r has to deal with


- a certain tuning of parameters
- or the consideration of more than two axions

(Czerny, Higaki, Takahashi 2014; Choi, Kim, Yun, 2014)

The scales of axions

(Chatzistavrakidis, Erfani, Nilles, Zavala, 2012)

Does this fit into string theory?

Large tensor modes and $\Lambda \sim 10^{16} \mbox{GeV}$ lead to theories at the "edge of control"

- small radii
- large coupling constants
- light moduli might spoil the picture

Does this fit into string theory?

Large tensor modes and $\Lambda \sim 10^{16} \mbox{GeV}$ lead to theories at the "edge of control"

- small radii
- large coupling constants
- light moduli might spoil the picture

So it is important to find reliable symmetries

- axions are abundant in string theory
- perturbative stability of "shift symmetry"
- broken by nonperturbative effects
- discrete shift symmetry still intact

Explicit realizations

The original KNP paper considered heterotic b_2 axions

- with gauge instantons of $SU(n) \times SU(m)$ (require pretty large n, m depending on value of α)
- Type II theories have more flexibility $(b_2, c_2 \text{ and } c_4 \text{ axions and various stacks of D7-branes})$

Explicit realizations

The original KNP paper considered heterotic b_2 axions

- with gauge instantons of $SU(n) \times SU(m)$ (require pretty large n, m depending on value of α)
- Type II theories have more flexibility $(b_2, c_2 \text{ and } c_4 \text{ axions and various stacks of D7-branes})$

Recently there have been model building attempts with

- multiply wrapped or magnetized D7-branes
- seem still to require large ranks and windings

(Long, McAllister, McGuirk, 2014)

There are reasons for optimism

Variants of the KNP-scenario

"N-flation"

(Dimopoulos, Kachru, McGreevy, Wacker, 2005)

- postulates N non-interactive axions to obtain
- an effective axion scale $f_{\rm eff} \sim \sqrt{N} f_i$
- ullet a realistic scenario requires $N \geq 1000$

(Kim, Liddle, 2006)

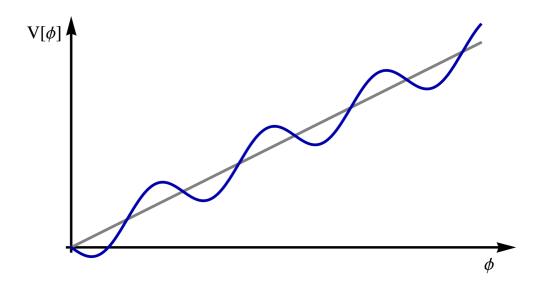
Variants of the KNP-scenario

"N-flation"

(Dimopoulos, Kachru, McGreevy, Wacker, 2005)

- postulates N non-interactive axions to obtain
- an effective axion scale $f_{\rm eff} \sim \sqrt{N} f_i$
- ullet a realistic scenario requires $N \geq 1000$

(Kim, Liddle, 2006)

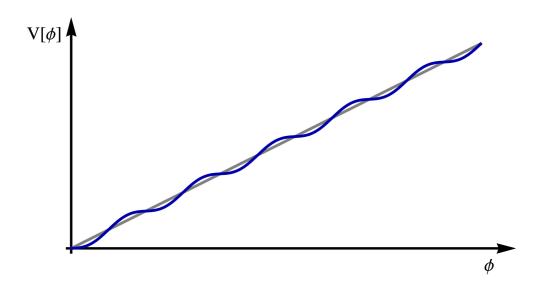

Many fields lead to a rescaling of Planck mass $M_{\rm Pl} \to \sqrt{N} M_{\rm Pl}$ (and the problem remains unsolved)

The way out is alignment à la KNP (you gain a factor $\sqrt{N!}$)

(Choi, Kim, Yun; Czerny, Higaki, Takahashi; Bachlechner et al., 2014)

"Axion Monodromy"

One adds a background (brane) that breaks the axionic symmetry (McAllister, Silverstein, Westphal, 2008)



$$V(\phi) = \Lambda^4 \left[1 - \cos\left(\frac{\phi}{f}\right) \right] + \mu^{4-p} \phi^p$$

The discrete shift symmetry is broken as well.

Axion Monodromy

The "axionic potential" has to be suppressed

$$V(\phi) = \mu^{4-p}\phi^p + \Lambda^4 \left[1 - \cos\left(\frac{\phi}{f}\right)\right]$$

Symmetry protection is lost. Have to worry about gravitational backreaction of branes.

The original problem remains unsolved....

Backreaction in Axion Monodromy

Once the (discrete) axionic symmetry is broken one has to worry about the brane backreaction

- "For the backreaction to be a small correction, the geometry must be arranged to respect an additional approximate symmetry...."
- "The original axion shift symmetry, on its own, does not suffice to guarantee a flat potential"

(Baumann, Mac Allister, arXiv: 1404.2601)

Backreaction in Axion Monodromy

Once the (discrete) axionic symmetry is broken one has to worry about the brane backreaction

- "For the backreaction to be a small correction, the geometry must be arranged to respect an additional approximate symmetry...."
- "The original axion shift symmetry, on its own, does not suffice to guarantee a flat potential"

(Baumann, Mac Allister, arXiv: 1404.2601)

New ideas beyond "Axion Monodromy" are needed to solve the problem.

An attempt is "Massive Wilson line monodromy"

(Marchesano, Shiu, Uranga, 2014)

Dante's Inferno

"Dante's Inferno" uses two axions and a background brane

(Berg, Pajer, Sjors, 2009)

- KNP with a brane added or
- axion monodromy with an additional axion

Dante's Inferno

"Dante's Inferno" uses two axions and a background brane

(Berg, Pajer, Sjors, 2009)

- KNP with a brane added or
- axion monodromy with an additional axion

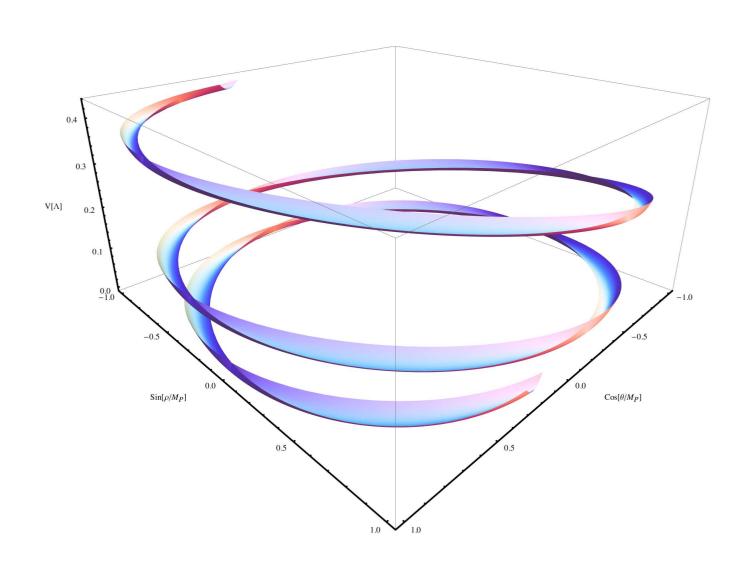
The alignment parameter α

- is tuned by choosing $f_1 \ll f_2$
- scheme shares the problems of "axion monodromy"

Again, the original (discrete) axion shift symmetry is broken and does no longer guarantee the "flatness" of the potential.

Conclusion

A successful model of inflation needs a flat potential and this is a challenge (in particular for models with sizeable tensor modes.)


- flatness of potential requires a symmetry
- axionic inflation
- sizeable tensor modes need trans-Planckian excursion of inflaton
- the solution is the alignment of two or more axions

(Kappl, Krippendorf, Nilles, 2014; Kim, Nilles, Peloso, 2004)

The ingredients for a successful model are

several axion fields and remnant discrete symmetries

The spiral axion slide

