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Chapter 1

Introduction

One of the strongest concepts in physics is the concept of symmetries. Following that
concept allowed to explain seemingly disconnected phenomena in a unified and elegant
way. This guideline led to two fundamental pillars of modern physics:

� General Relativity describes the weakest observed force, gravity. It is sourced by
the curvature of the 4 dimensional space time that has local coordinate invariance as
its underlying symmetry principle.

� Yang-Mills Theory describes the other three observed forces, the strong and the
electro-weak, where the later is broken by the Higgs effect at a scale of 247 GeV [18].
The standard model is described by a SU(3)C × SU(2)L ×U(1)Y gauge group that
is broken down to SU(3)C ×U(1)Q.

Although the Higgs particle is still not observed, the electro-weak unification and the par-
ticle standard model (SM) is in excellent agreement with experiments. However, it is very
desirable to unify the three forces further to an SU(5) grand unified theory (GUT) or even
to an SO(10) theory that also unifies all SM particles as well as a right handed neutrino
into one group representation [22].
The concept of super symmetry (SUSY) could even relate bosonic and fermionic particles.
Besides the adjustment of the running of the gauge couplings to meet (almost) exactly
at one point arround 1016 GeV [19] , which is not the case in non-SUSY GUTs, it has
a remarkable feature when promoted to a local symmetry: It naturally introduces super
symmetric gravity (SUGRA) to the particle theory and though it is not renormalizable as
a quantum field theory there is hope that SUSY is one key ingredient for a unified theory
of all forces [20].
The most promising candidate to unify all forces is super string theory , in which particles
are described by excitations of a fundamental string [21]. 10 space time dimensions are
required by consistency of the theory and can be seen as a prediction of the theory. The
phenomenological most promising fact however is, that it is possible to explain all SM
constants like coupling constants, Yukawa couplings, the µ term and many more just by

1



its underlying geometrical properties and one constant: the string length.
There are five distinct string theories in ten dimensions, namely Type I, Type II A and B
as well as the Heterotic SO(32) and E8 × E8. They are connected by a web of dualities
in low dimensions and could be unified to M-theory. However, for phenomenology the
heterotic theories are particularly interesting.
If we take string theory seriously we have to compactify six spatial dimensions which is best
understood on an orbifold. In this way chiral matter is introduced and the gauge group is
broken [8] [9]. This mechanism also provides a very natural explanation of R-symmetries,
that are need to forbid operators that induce fast proton decay, as the residual Lorentz
symmetry of the compactified space. Providing seemingly the possibility to address all
questions of modern physics, the physical method is turned upside down since the task is
know to break a very symmetric and mathematical rich theory, at best by a unique way
mechanism, down to our asymmetric observed world.
In recent years many string vacua with properties of the minimal super symmetric standard
model (MSSM) were found in Z6−II [5] and Z2 × Z2 [15] orbifolds. Motivated by this it is
natural to assume that one can be similarly successful in the Z2×Z4 orbifolds because Z4

has also a Z2 subgroup. To suppress the µ term and forbid proton decay operators we have
to look for an R-symmetry as well. A convenient one that commutes with GUT groups
like SO(10) and SU(5) is the Z4 R-symmetry [16], [17] and it is reasonable to assume that
this can be achieved in an orbifold with the same symmetry factor.

Outline

This thesis is structured as follows: In the second chapter we review the heterotic string
and its construction as well as compactifications on orbifolds. In order to put us in a good
starting position we provide a complete classification of all Z2×Z4 models in chapter three.
To achieve this we make use of the internal symmetries of the E8 root lattice and construct
all 144 inequivalent models. Among them we find 35 SO(10), 26 E6 and 25 SU(5) models.
In chapter four we will then introduce the geometry of our orbifold models and look at
features of them. At last we have a brief look at spectra of E6 and SO(10) models and
introduce Wilson lines in order to break down to the SM gauge group and three families.
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Chapter 2

The heterotic string in orbifold
compactification

The idea of heterotic string theory is to combine the 26 dimensional bosonic string and
the 10 dimensional super string to a hybrid theory of both1 that lives in 10 space time
dimensions.
The heterotic super string theory looks artificially at first sight, in contrast to Type I
and Type II theories since it is constructed from two other string theories. However the
heterotic string naturally comes with a big non-Abelian gauge group which makes it very
interesting for phenomenology.
The two possibilities for these gauge groups are either SO(32) or E8 × E8. Both gauge
groups are very large but only the second one can incorporate the E6 and all other common
GUT gauge groups and provides a second E8 as a hidden sector gauge group. Therefore
this thesis will focus on the E8 × E8 heterotic string.
To make contact with the observed world one needs to compactify 6 extra dimensions and
make them small. To get phenomenologically favoured models that posses N = 1 super
symmetry the compact manifold has to be a Calabi-Yau threefold or an orbifold. As the
metric on a Calabi-Yau threefold is unknown we stick to orbifold spaces. In recent years
it was possible to achieve many MSSM like models out of the orbifolded heterotic string
which reinforces the hope that string theory could be a description of our world.
In this chapter the basic concepts we use are reviewed, namely the heterotic string, orbifold
compactifications and their consequences for the heterotic string.

2.1 Introduction to string theory

In contrast to a point particle has string theory the striking feature to describe our matter
as a two dimensional object. Therefore, the world line of the particle becomes a world
sheet that is embedded into the target space. The super string world sheet action is given

1There is also a fermionic construction but this thesis will focus on the bosonic one.
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by [1]:

S = − 1

2π

∫
dσdτ

(
∂αXµ∂

αXµ + ψ̄µρα∂αψµ
)
. (2.1.1)

The world sheet coordinates σ and τ are mapped to the target space via the bosonic
coordinates Xµ and the fermionic coordinates ψµ. The index µ = 0, . . . , D − 1 runs over
the D dimensional target space and α = 0, 1 over the 2-world sheet coordinates and ρα are
the two dimensional gamma matrices

ρ0 =

(
0 −1
1 0

)
and ρ1 =

(
0 1
1 0

)
.

This action posses global world sheet super symmetry that maps the bosonic coordinates
to the fermionic ones and vice versa under the transformations:

δXµ = ε̄ψµ ,

δψµ = ρα∂αX
µε .

Leaving out the fermionic part of the action, gives the purely bosonic string theory. Both
theories have a tachyonic ground state but can be removed from the spectrum in the super
string case. Hence the bosonic string has not a stable vacuum and is not a consistent
theory on its own but in the construction of the heterotic string it is of great importance.
Further symmetries of the action are world sheet Weyl- and reparametrization invariance
as well as target space Poincaré invariance given by the transformations:

hαβ → eφ(σ,τ)hαβ ,

σα → fα(σ, τ) ,

Xµ → aµνX
ν + bµ .

Since string theory is a conformal field theory on the world sheet one can use Weyl and
reparametrization invariance to bring the metric into a locally flat form.
This freedom can be exploited to write the action in light cone coordinates σ± = 1

2
(τ ± σ),

turning the worldsheet metric into

h±,± = −1

2

(
0 1
1 0

)
and changing the action to

S =
1

π

∫
dσ+dσ− (2∂+X

µ∂−Xµ + iψµ+∂−ψ+,µ + iψµ−∂+ψ−,µ) . (2.1.3)

To minimize the action one has to assign boundary conditions to the bosonic and fermionic
coordinates and impose the equations of motions for the fields and the world sheet metric.
In the further discussions we will only consider closed strings with boundary conditions

Xµ(σ + π) = Xµ(σ) ,

ψ±(σ + π) = ±ψ±(σ) .
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For the fermionic coordinates it is possible to assign positive Ramond (R) and negative
Neveu-Schwarz (NS) boundary conditions.
The equations of motions for the fields in light cone gauge are

∂+∂−X
µ = 0 , (2.1.4a)

∂+ψ− = ∂−ψ+ = 0 , (2.1.4b)

implying that one can split up the real bosonic coordinates Xµ = Xµ
+(σ+) + Xµ

−(σ−)
into left-and right-moving modes with respect to the light cone coordinates2. The general
solution to the equations of motion can be written as a mode expansion,

Xµ
± =

1

2
xµ +

1

2
pµ±(τ ± σ) +

i

2

∑
n∈Z,n 6=0

1

n
αµn,±e

−2in(τ±σ) , (2.1.5)

with a center of mass position xµ, momentum pµ = pµ+ = pµ− and two distinct sets of
oscillators αµn,+ and αµn,−for left and right-movers respecting the closed string boundary
conditions.
The two different boundary conditions for the fermions results in two different mode ex-
pansions for each case

ψµ±(σ, τ) =
∑
n∈Z

dµn,±e
−2in(τ±σ) R boundary conditions ,

ψµ±(σ, τ) =
∑
s∈Z+ 1

2

bµs,±e
−2is(τ±σ) NS boundary conditions .

Since we fixed the world sheet metric h±,±, one has to demand that its equation of motion
is still fulfilled. With

δS

δh±,±
∝ T±,± = 0 ,

one has to impose the condition that the energy momentum tensor T±,± vanishes.
When one promotes super symmetry from a global to a local symmetry on the world sheet,
one has to demand in addition that the super current J vanishes. The Fourier modes of
the energy momentum tensor and the super current J are the super conformal generators
Ln,L̃n and Fs in the R-sector and Gt in the NS-sector respectively.
When we quantise the theory, the coordinates have to fulfill the canonical (anti-)commutation
relations and one can derive the following commutation relations for the modes:[

αµm,±, α
ν
n,±
]

= mδm+n,0η
µνδ±,±

{dµn,±, dνn,±} = δm+n,0η
µνδ±,±.

2Including the reality constraint this implies that the fermions are Majorana-Weyl fermions as one
would expect in a 2D theory.
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Reality of the coordinates X(σ, τ) together with the Majorana-Weyl fermion ψµ±(σ±) imply
the conditions

(αµn,±)† =αµ−n,± , (2.1.8a)

(dµn,±)† =dµ−n,± , (2.1.8b)

(bµn,±)† =bµ−n,±. (2.1.8c)

The modes of the energy momentum tensor satisfy the Virasoro algebra

[Lm,±, Ln,±] = ((m− n)Ln+m + f(m)δm+n,0) δ±,± ,

with a central extension f(m), hinting at the quantum mechanical breaking of the confor-
mal symmetry which is absent in the classical theory.
Imposing vanishing of the energy momentum tensor T±,± and the super current J translates
into the condition that their positive modes annihilate a physical state:

Lm,±|φ〉 = 0 for n > 0 (2.1.9a)

Fs|φ〉 = 0 for s > 0 (2.1.9b)

Gt|φ〉 = 0 for t > 0 . (2.1.9c)

The zero modes are problematic because they have a normal ordering ambiguity. This
applies only to Lm,± since Fs and Gt are fractional modes. Equation (2.1.9a) thus changes
to

L0,± − aR/NS|φ〉 = 0 , (2.1.10)

so that the zero modes get a normal ordering constant aR/NS depending on the sector.
Another constraint that has to be imposed on a physical state is

L0,+ − L0,−|φ〉 = 0. (2.1.11)

This condition is the level matching condition and has to be imposed since L0,+ − L0,−
generates rigid world sheet translation along the σ direction under which a closed string
must be invariant [2]. This condition is the only relation between left and right-moving
modes.
The light cone gauge has not yet fixed all residual degrees of freedom of the conformal
symmetry, such that many unphysical states appear in the spectrum. These ’spurious’
states have zero norm and should decouple from the physical spectrum.
They do for appropriate values of the normal ordering constant aR/NS and the target space
dimensionality that appears in the central extension of the Virasoro algebra.
Thus the normal ordering constant aR/NS can be evaluated to

aR =
1

2
R boundary condition , (2.1.12a)

aNS = 0 NS boundary condition , (2.1.12b)

ab = 1 purley bosonic string . (2.1.12c)
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These consistency requirements lead to the astonishing result that string theory fixes its
target space dimensionality to d = 26 for the purely bosonic string and d = 10 for the
super string.
There is still a residual symmetry left that can be used to fix 2 bosonic and fermionic target
space coordinates and their oscillators, such that the appearing oscillators are transverse,
hence the name light cone coordinates.
Since the string was decomposed into left and right-moving modes, a physical state is
recaptured by tensoring the left-and right-movers back together to form

|φ〉 = |φ+〉 ⊗ |φ−〉

respecting their mass equations given by

L0,− − aR/NS = L0,+ − aR/NS = 0

and the level matching condition (2.1.11).3

In the bosonic and the super string there are tachyonic ground states. Thanks to the
GSO projection [21] the tachyonic states are absent from the super string theory and fixes
N = (1, 0) target space super symmetry.

2.2 The heterotic string

The heterotic string is build up from the right-movers of the 10 dimensional super string
and the 26 dimensions of the bosonic string. The heterotic string action is given by

S =
1

π

∫
d2σ

(
2∂+X

µ∂−Xµ + iψµ+∂−ψr,µ + 2∂+X
I
−∂−X−,I

)
. (2.2.1)

Hence, Xµ = Xµ
+ + Xµ

− are recombined to a space time boson. Consequently, the index µ
runs from 2 to 9 since the first two coordinates are fixed in the light cone gauge. What
remains are the fermionic right-movers and the residual 16 dimensional bosonic left-movers
labelled by the index I that runs from 1 to 16.

2.2.1 The right-mover

The right-mover is taken from the super string from the previous chapter. Its mass is given
by the usual zero modes minus the normal ordering constant given by

M2
+

8
= NR/NS − aR/NS

3Space time bosons are made up of R-R and NS-NS and fermions of R-NS and NS-R left- and right-
mover combinations.
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with the oscillator number operators

NR =
∞∑
n=1

αµ−nαn,µ + dµ−ndn,µ ,

NNS =
∞∑
n=1

αµ−nαn,µ + bµ−n+1/2bn−1/2,µ .

for the Ramond and Neveu-Schwarz sector respectively. The mass scale of the heterotic
string is in the 1017GeV regime [1], so we consider only massless strings. A ground state is
defined as a state that is annihilated by all positive oscillators such that higher excitations
are created by negative modes.
The massless state in the Ramond sector is its ground state. The ground state is also an
eigenstate of the dµ0 operator since this operator commutes with NR. dµ0 also fulfills the
Clifford algebra

{
√

2dµ0 ,
√

2dν0} = 2ηµν (2.2.3)

up to a rescaling factor. Since two coordinates of dν0 are fixed in the light cone gauge,
the ground state transforms under the little group SO(8). Additionally dν0 is also real,
seen by equation eq:oszidagger, such that the ground state is a massless 10 dimensional
Majorana-Weyl fermion.

The ground state of the Neveu-Schwarz sector is a tachyon with
M2

+

8
= −1

2
. Since there is

no left-mover with the same mass, the level matching condition ensures that this state is
removed from the spectrum. Thus the massless ground state is given by

bµ−1/2|0〉. (2.2.4)

This states transforms as a massless space time vector boson under SO(8).
One can shorten the notation by rewriting the mass equation for the two sectors as

M2
+

8
=
q2

2
+N − 1

2
(2.2.5)

with q being a weight vector of SO(8). The Ramond sector is encoded via the spinorial
roots

qs =

(
±1

2
,±1

2
,±1

2
,±1

2

)
(2.2.6)

with a positive number of minus signs yielding the spinor representation 8s of SO(8). The
Neveu-Schwarz sector is given by the vectorial roots

qv = (±1, 0, 0, 0) , (2.2.7)

with the underline meaning all possible permutations of the entries yielding the 8v repre-
sentation of SO(8).
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2.2.2 The left-mover

The left-mover is given by the 26 dimensional bosonic string from the previous chapter.
The first 10 coordinates are combined with the bosonic right-movers but there are 16 left-
movers in the action given in equation (2.2.1). The concept that is used to get rid of them
is also used in the next chapter: compactification.
The 16 dimensions are compactified by modding a 16 dimensional lattice out of R16

M16
Compactification−−−−−−−−−→ R16

Λ16

= T 16 .

This is just the generalization of Kaluza and Klein’s idea of compactification of a fifth
dimension on a circle which is now a sixteen torus T 16.
An identification of space points means that the string can now close up to a lattice shift
XI = XI +Λ16. Due to the single-valuedness of the wave function that comes with a factor
of eiPX it is clear that the momentum in the compactified direction has to be quantized in
the dual lattice Λ∗.
In fact modular invariance of the one-loop partition function requires the lattice to be
unimodular, integral, even and self dual [2]. These are quiet many strong requirements on
the lattice but luckily there are two lattices that fulfill these: The SO(32) and the E8×E8

root lattice. Each of these lattices provides gauge degrees of freedom and builds up an own
unique heterotic string theory. Getting non-Abelian gauge theories from compactification is
thus a purely ’stringy’ result and not possible for point-like particles as in the usual Kaluza-
Klein theory. In the low energy effective super gravity limit, the modular invariance of the
string partition function translates into absemce of anomalies such that string theory can
naturally explain why only E8 × E8 and SO(32) appear as anomaly free gauge groups!
However we will concentrate on the E8 × E8 heterotic string in this thesis.
The mass equation for the left-mover follows from equation (2.1.10)

M2
−

8
=
P 2

2
+N − 1 , (2.2.8)

with the excitation number operator

N =
∞∑
n=1

αµ−n,−α
ν−n,−ηµ,ν + αI−n,−α

J
−n,−δI,J .

The ground state of the left-mover is again a tachyon and absent since its mass square is
M2
− = −8 and the tachyon of the right-mover has mass square M2

+ = −4 such that their
masses do not match and the level matching condition ensures that this state is absent.
The first excited modes that are also massless are given by

|P 〉 ,
αI−1,−|0〉 ,
αµ−1,−|0〉 .

where the first two transform as a space time scalar and the last one as an SO(8) space
time vector boson.
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2.3 The massless spectrum of the heterotic string

The massless left and right-moving states are tensored together to give the N = 1 super
gravity multiplet

|qv〉⊗α−1,µ|0〉


gµν graviton
Bµν two form field
φ dilaton

, |qs〉 ⊗ α−1,µ|0〉


Ψµ gravitino

ψ dilatino

and the super Yang-Mills multiplet

|qv〉 ⊗ αI−1|0〉
|qv〉 ⊗ |P 〉

}
Aµ gauge bosons ,

|qs〉 ⊗ αI−1|0〉
|qs〉 ⊗ |P 〉

}
λ gauginos

The internal 2·8 oscillators form the Cartan elements of the gauge group. The quantized
internal momenta P form the 2 ·240 roots of the two E8s (see Appendix A). Together they
form the 496 states of the adjoint representation of E8 × E8.

2.4 Orbifold compactifications

The fact that string theory fixes the space time dimensionality is very extraordinary but
with d = 10 the dimensionality does not match our observed 4 space time dimensions.
To solve this problem one does the same as in the case of the 16 residual dimensions of
the bosonic left-movers: Compactification on a six torus T 6 assuming that its volume is
sufficiently small to lead to our observed Newtonian gravity law4.

M9,1
Compactification−−−−−−−−−→M3,1 ⊗

R6

Λ6

= M4 ⊗ T 6. (2.4.1)

This simple compactification has certain problems when one looks at the splitting of the
representations of SO(8) into SO(2)× SO(6). From the splitting of the Dynkin Diagram
in figure 2.1. SO(2) is isomorph to U(1) which is the helicity of the particles in the
4 dimensional non compact space. Consequently the spinorial and vectorial weights of

≃

SO(8) SO(6) SU(4)

Figure 2.1: The group theoretical breaking of SO(8) to SO(6) which is equivalent to SU(4)

4The compactified dimensions has to be in the sub millimeter regime to meet the experimental values.
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SO(8) of equation (2.2.6) and equation (2.2.7) decompose as

8s =

(
±1

2
,±1

2
,±1

2
,±1

2

)
→ ±

(
+

1

2
,±(

1

2
,
1

2
),

1

2

)
,

8v =(±1, 0, 0, 0) → (±1, 0, 0, 0) + (0,±1, 0, 0).

The 4d gravitino is identified as the sum of the decomposed weight that has a helicity of
3/2 ,

±
(

3

2
,±(

1

2
,
1

2
),

1

2

)
,

which has from the 4d point of view a degeneracy of 4 since this is a 4 and a 4̄ of the
internal SU(4).
So instead of 1 super partner for the graviton there are 4 gravitini and instead of N = 1
there is N = 4 SUSY. Four super symmetries have a lot of nice theoretical but not phe-
nomenological properties like vanishing of the β-function5 and non chirality. A phenomeno-
logically more appealing super symmetry is N = 1 since it is the only super symmetry in
4 dimensions that provides a chiral spectrum [23].
The reason why one gets the 4 super symmetries is that the internal SO(6) symmetry of
the T 6 is the one of a flat space in particular the torus has trivial holonomy. To achieve
N = 1 one has to demand an SU(3) holonomy since then not all 4 spinors are covariantly
constant but only one. Manifolds with such a holonomy group are called Calaby-Yau man-
ifolds and were excessively studied in the literature [24]. However these spaces are still very
complicated since in most cases the metric is not known and string theory is very hard to
handle on non flat spaces. The other possibility to compactify the space are orbifolds that
are flat everywhere with exception of some finite points and posses a discrete subgroup of
SU(3) holonomy.

2.4.1 Definition of an orbifold and its properties

Orbifolding means to mod out a discrete finite symmetry of a given manifold. This can
be an Abelian or a non-Abelian symmetry like ZN or SN . Here we will deal with Abelian
symmetries only and focus later especially on Z2×Z4. Thus an ZN or ZN ×ZM symmetry
of the six dimensional compact space is further modded out. Concrete this means to mod
out a point group PZN×ZM of the compactification lattice of the torus.

T6 Orbifolding−−−−−−→ T6

ZN × ZM
=

R6

PZN×ZM n Λ6

=
R6

S6

(2.4.2)

The group action of the lattice identification and the Abelian point group can be naturally
combined in a semi-direct product n to the space group S6 = PZN×ZM n Λ6, a discritised

5Vanishing of the regularization group functions implies that this is a conformal field theory again.
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e1

e2

Figure 2.2: The geometry of a T2 torus on an SU(3) Lie lattice. Due to the identification of
points that differ by lattice vectors, the fundamental domain lies within they gray region.

version of the Euclidean group.
However there is only a finite amount of different six dimensional base lattices that allow
for modding out a point group. It was shown that for six dimensional lattices with ZN
point groups, N has to be 3,4,6,7,8 or 12 [25].
For ZN × ZM point groups with N=2,3,4,6 and M being an integer multiple of N smaller
than 8 are allowed (except for Z2×Z3). The basis of the torus lattices is expressed via the
simple roots of some Lie algebra.
For example a two dimensional torus with SU(3) Lie lattice has the simple roots

e1 =
(√

2, 0
)
,

e2 =

(
− 1√

2
,

√
3√
2

)
and is graphically depicted in figure 2.2. This lattice has clearly a Z3 rotation symmetry
about 120o. Turning to T6 one has to distinguish the choice of the lattice structures
underlying the T6 between a factorisable and a non-factorisable lattice.
If a lattice is factorisable, it is possible to continuously deform it such that T6 factorises
into T2× T2× T2 while still preserving its point group. If this is not possible then it is a
non-factorisable lattice. From this it follows that a T6 is only factorisable if the geometry is
a direct product of Lie lattices with rank 2 at most. For Z2×Z4 and all possible ZN point
groups the lattices are given in table 2.1 taken from [32] [11]. For simplicity we want T6

to be factorisable so we have to choose the right Lie lattice for Z2×Z4 when we introduce
the geometry in the fourth chapter.
As already mentioned in the Z3 example, the orbifold action is embedded as a discrete
rotation, so it is generated by the three Cartan elements of SU(4). If we complexify the
internal coordinates X i ∈ R6 to

Zi = X2i−1 + iX2i

the orbifold action can be written as a diagonal complex 3× 3 matrix

θ = diag(e2πv1N , e2πv2N , e2πv3N ) (2.4.3)
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Point Group Order Lie Lattice factorisable
Z3 SU(3)3 Yes
Z4 SU(4)2 No

SO(5)× SU(4)× SU(2) No
SO(5)2 × SU(2)2 Yes

Z6−I G2
2 × SU(2)2 Yes

Z6−II G2 × SU(3)× SU(2)2 Yes
SU(6)× SU(2) No
SU(3)× SO(8) No

SU(3)× SO(7)× SU(2) No
Z7 SU(7) No
Z8−I SO(9)× SO(5) No
Z8−II S0(10)× SU(2) No

SO(9)× SU(2)2 No
Z12−I E6 No

F4 × SU(3) No
Z12−II F4 × SU(2)2 No
Z2 × Z4 SU(2)2×SO(4)2 Yes

SO(6)2 No
SO(6)×SO(4)×SU(2) No

SO(8)×SO(4) No
SO(10)×SU(2) No

SO(12) No

Table 2.1: All possible ZN orbifolds and their possible T6 Lie lattice structures. The last
column specifies whether the lattices are factorisable upon an appropriate choice of torus
coordinates.

acting on the 3 complex coordinates with the shift vector

vN =
(
0, v1

N , v
2
N , v

3
N

)
.

This vector will completely specify the action of the orbifold on the internal lattice. The
zeroth component has been chosen to clarify that the orbifold does not act on the non
compact direction and to define a proper scalar product between vN and the SO(8) weights
q which will be needed in the next chapter. For θ to be of order N , it follows for vN that

θN = 1 ⇒ NviN ∈ Z ∀i (2.4.4)

and for θ to be an element of SU(3) it follows that

Det(θ) = 1 ⇒ v1
N + v2

N + v3
N ∈ Z. (2.4.5)
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If the second condition is chosen to be exactly zero, there are only two independent shift
vector components. The rotations are then generated by only two independent Cartan
elements making it an element of SU(3) which is just the Calabi-Yau condition for N = 1
super symmetry. This will become clearer in the next chapter when we describt how the
shifts act on the gravitino weights. For every component of vN that is chosen to be zero,
the amount of super symmetry is increased by a factor of 2 again.
Since there are two Cartan generators at our disposal it is also possible to add a second
independent rotational matrix ω generated by a second shift vector w

ω = diag(e2πv1M , e2πv2M , e2πv3M ) (2.4.6)

of order M. This is just the enlargement to a ZN × ZM orbifold. Since there are only two
Cartan elements of SU(3) it is not possible to enlarge this further to three point groups.
Also vM has to satisfy

MviM = Z ∀i , (2.4.7a)

v1
M + v2

M + v3
M = Z. (2.4.7b)

In that way it is possible to let θ and ω act trivial in one of the three tori as long as it is
not the same. A convenient choice for the two shifts is thus

vN =
1

N
(0, 1,−1, 0) ,

vM =
1

M
(0, 0, 1,−1).

A ZN × ZM orbifold twist is then given by

θl · ωk = diag(e2π(lv1+kw1), e2π(lv2+kw2), e2π(lv3+kw3)) ,

with l, k ∈ N0 and l < N, k < M .
Since we discuss Z2 × Z4 later, our choice of the shift vectors is

v2 =
1

2
(0, 1,−1, 0) , (2.4.8)

v4 =
1

4
(0, 0, 1,−1). (2.4.9)

2.4.2 Twisted sectors and fixed points

A very important property of orbifolds is the appearance of fixed points or planes:
These are points or planes which are identified with respect to lattice shifts and rotations.
In figure 2.3 it becomes clear that there are fixed points that stay invariant under the
orbifold action. Therefore, the orbifold does not act freely on the lattice. Depending how
often the rotation acts on the tori, there are N or N ×M twisted sectors (including the
trivial sector). But not all of these sectors are inequivalent since the kth sector is the inverse

14



e2 e2

e1

a.) b.)

e1

e1

120o

e1

120o e2

Figure 2.3: The three fixed points of one T2 torus in a Z3 orbifold. Picture a.) shows the
fixed points. The zero point is a trivial fixed point. The other two have to be shifted with
lattice vectors after the rotation to return to their old position. Picture b.) shows the new
fundamental domain which is 1/3 of the original one.

of the (N − k)th and therefore it also has the same fixed point structure. It turns out that
strings are attached to the fixed points and that representations are only completed by
their CPT conjugates that are provided by the strings living in the inverse twisted sectors.
This is why the Z3 example is exceptionally simple since there is only one independent
twisted sector.
Every fixed point zf ∈ C3 is related to an element of the space group6 g(θk · ωl, nαeα) ∈ S

zf = g(θk · ωl, nαeα)zf

= (θk · ωl)zf + nαeα

⇔ zf = (1− θk · ωl)−1nαeα (2.4.10)

so that we talk about constructing elements g instead of the fixed points themselves.
Two space group elements are multiplied via

g(θ, eα)g̃(ω, eβ) = ĝ(θ · ω, eα + θeβ) . (2.4.11)

Therefore the inverse of an element is given as

(g(θ, e1))−1 = g(θ−1,−θ−1e1) , (2.4.12)

so that we get the formula for conjugation

(h(ω, e2))−1 g(θ, e1)h(ω, e2) = g̃
(
θ, ω−1 [e1 + (θ − 1)e2]

)
, (2.4.13a)

which will be usefully later.
The appearance of fixed points is an essential property of orbifolds. They also imply that
there is a non vanishing curvature on the manifold. This is depicted in figure 2.4. Here we

6For the ZN case put l = 0.
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e1

e2

a

b

Figure 2.4: Example of a parallel transport of a vector around a closed path under the
orbifold action encircling the fixed point at the origin. This signals the non trivial curvature
of the orbifold that is concentrated at the fixed point.

start with an arbitrary vector starting on point a. Since the space is coming from the flat
torus, one can parallel transport the vector with the flat metric to position b.The vector
is then taken back to the original position a but with a 120o twist due to the orbifold
identification. From the orbifold point of view this was a closed path encircling the fixed
point at the origin. In that way it was possible to rotate the vector under a closed path so
that there is a non trivial curvature on the space.
This states that the manifold is flat everywhere except for the fixed points. Fixed points
thus concentrate, such that they are curvature singularities. So an orbifold is not a regular
manifold.
A quantum field theory that describes point like particles would not be well defined on
an orbifold, though strings are extended objects and they can enclose the singularities, so
that the theory is still well defined. Due to the fact that the space is basically flat, the
heterotic string theory stays solvable on that space.
On the other hand there is the problem of moduli stabilisation that is not addressed in this
work: The moduli describe e.g. geometric properties of the internal six dimensional space
like the volume. These properties can vary freely and look like scalar fields from the four
dimensional perspective. To solve string theory the internal geometry must be fixed by
giving vevs to them. This in turn will blow up the singularities and changes the orbifold
geometry to a smooth Calabi-Yau manifold [26] [27].

2.5 Strings on orbifolds

The orbifold geometry allows that an internal string coordinate Z ∈ C3 can now close
under a space group element g ∈ S

Zi(τ, σ + π) = gZ(τ, σ). (2.5.1)

If g involves a trivial twist, e.g. g(1, nαeα) then the string lives in the untwisted sector and
is free to move there and can move on the whole orbifold. Matter in this sector is called
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bulk matter. To satisfy equation (2.5.1) for an arbitrary g(θk, nαeα), the mode expansion
of the internal coordinates has to satisfy

Zi(τ, σ + π) = zi + piτ + oscillators

= (θkz)i+nαe
i
α+ (θkp)iτ + oscillators∗ .

From comparing the two equations it becomes clear that the center of mass position zi has
to be a fixed point/plane and that either the twist or the momentum pi has to be trivial
in the given torus. Thus the twisted string is attached to a fixed point/plane and cannot
move away from it.
Also the oscillators αim change to αim+ηi with kvi = 0 mod 1 such that7 0 < ηi < 1. Note

that also the oscillators have been complexified and were split up into holomorphic αim+ηi

and anti-holomorphic ones αīm+η̄i with η̄i = 1− ηi. Due to this the right-moving momenta

q and their mass equation is shifted for a non trivial constructing element g(θk, nαeα) to

qsh = q + kv (2.5.3)

M2
−

8
=
q2

sh

2
− 1

2
+ δc . (2.5.4)

With δc = 1
2

∑
i = 13ηi(η̄i) is the change in the ground energy of the kth twisted sector.

2.5.1 Modular invariance and shift embedding

To preserve modular invariance it is also necessary to embed the orbifold space group S
into the gauge degrees of freedom S ↪→ G with the gauge twisting group G. The gauge
twisting group G is embedded as an inner automorphism of the E8 × E8 lattice. Since an
automorphism acts freely there are no fixed points in the gauge part and the embedding
can be realized as a shift acting on the E8 × E8 lattice. An element of S is associated to
an element of G as

g(θk · ωl, nαeα) ↪→ (kVN + lVM , nαAα)

that acts on the 16 internal left-moving coordinates as a shift

XI(σ+π) = gXI(σ+) = XI(σ+) + kV I
N + lV I

M + nαA
I
α.

Twists with g(θk · ωl, 0) therefore induce the shifts kVN + lVM and lattice translations
g(1, nαeα) are accompanied by the shifts nαAα.
The associated lattice translations Aα are called discrete Wilson lines [10] since they
are inherited from non contractible cycles on the underlying torus which can support non
vanishing gauge background.

7The same line of argumentation is also true for the fermionic coordinates changing their oscillators as
well.
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The embedding must be a homomorphism such that the properties of the space group
transfer to the gauge embedding. Hence

g(θ, 0)N = g(1, 0) ↪→ NVN ∈ ΛE8×E8 , (2.5.5a)

g(θ, 0)M = g(1, 0) ↪→ MVM ∈ ΛE8×E8 , (2.5.5b)

g(θ, 0) · (1, eβ) = g(θ, eα) ↪→ Aα = Aβ , (2.5.5c)

g(θ, eα)Kα = g

(
θKα ,

Kα∑
i=0

θieα

)
= g(θKα , 0) ↪→ KαAα ∈ ΛE8×E8 . (2.5.5d)

The first two equations constrain the order of the shift embeddings. The last two fix the
maximal amount of independent Wilson lines one can assign as well as their order. The
amount of Wilson lines is thus maximally six in Z2 × Z2 and minimally zero in Z6 × Z6.
Additionally modular invariance of the partition function requires the conditions [3]

N(V 2
N − v2) = 0 mod 2 , (2.5.6a)

M(V 2
M − w2) = 0 mod 2 , (2.5.6b)

M(VNVM − v · w) = 0 mod 2 , (2.5.6c)

Tα(Aα · VN/M) = 0 mod 2 , (2.5.6d)

TαA
2
α = 0 mod 2 , (2.5.6e)

gcd(Tα, Tβ)(Aα · Aβ) = 0 mod 2 for α 6= β . (2.5.6f)

For the classification of inequivalent shift embeddings in chapter 3 only the first three
conditions are important. Note that one can relax condition three, four and six by adding
lattice vectors to the shifts and Wilson lines.

2.5.2 The left-mover

The embedding of the shifts into the gauge degrees of freedom also changes the left-moving
momenta P and its mass equation for a given fixed point, similar to the change of right-
movers that were shifted by v, to

Psh =P + kVN + lVM + nαAα ,

M2
−

8
=
P 2

sh

2
+ Ñ − 1 + δc .

The oscillator number Ñ is fractional and the vacuum energy δc is the same as in the
right-moving case.

2.5.3 Forming orbifold invariant states

The last chapter emphasized that the mass equations of left and right-movers depend on
the fixed point and the twisted sector. Therefore the Hilbert space splits up into Hilbert
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spaces of fixed points Hg with states that fulfill the boundary condition

Z(τ, σ + π) = gZ(τ, σ). (2.5.7)

Multiplying by another arbitrary element h yields

(hZ)(τ, σ + π) =hgZ(τ, σ)

=hgh−1(hZ)(τ, σ).

If [g, h] = 0 then Z and hZ close under the same constructing element g and therefore
belong to the same Hilbert space Hg. Each constructing element has a centraliser

Zg = {h | [g, h] = 0} , (2.5.8)

which is the set of elements h that map the Hilbert space Hg to itself.
However, an element h induces a phase when applied on a string state,

|qsh,g〉 ⊗ α̃|psh,g〉
h→ φ|qsh,g〉 ⊗ α̃|psh,g〉

!
= |qsh,g〉 ⊗ α̃|psh,g〉. (2.5.9)

The factor φ is the orbifold phase which has to be trivial such that a state can appear in
the spectrum. Together with the mass equation that is given by the constructing element,
a string state has to respect all projection conditions that are induced by the elements of
its centraliser.

2.5.4 The orbifold phase

The orbifold phase results from the non trivial behavior of the left and right-movers under
space group elements h(θm · ωn, nαeα) ∈ S of the centraliser.
Since a right-mover |qsh〉 corresponds to a vertex operator e−2iqshH with the bosonised
H-momentum H i [30] and transforms as

H i h→H i + π(mvi + nwi) = H i + πvih ,

|qsh〉
h→ e−2iqsh·vh |qsh〉.

A left-mover |Psh〉 corresponds similarly to a vertex operator e2πiPsh·X and transforms as

X
h→X +mVN + nVM + nαAα = X + Vh ,

|Psh〉
h→ e2iPsh·Vh |Psh〉.

The holomorphic and anti holomorphic oscillators αin−ηi and αīn+ηi exhibit the transforma-
tion behavior [28]

αin−ηi
h→e2πiviαin−ηi ,

αīn+ηi
h→e−2πiviαin−ηi .
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Putting all these terms together yields the phase φ

φ = e2πi(PshVh−(qsh−N+N̄)·vh)φvac ,

= e2πi(Psh·Vh−(qsh−N+N̄)·vh)e−πi(Vg ·Vh−vg ·vh) , (2.5.10)

where the contribution of the vacuum phase φvac is explained in the appendix A of [3] and
N i and N̄ i are the holomorphic and anti-holomorphic oscillator numbers.
A physical string state has to have a trivial orbifold phase for all elements h of the cen-
traliser of its constructing element.

2.5.5 Summary and untwisted spectrum

Now all steps to build up an orbifold model and calculate its spectrum are in principal
known. The model itself is completely specified by

1. the choice of the lattice,

2. the choice of the shifts vN & vM ,

3. the shift embeddings VN & VM ,

4. the choice of the Wilson lines Aα.

Getting the particle spectrum is then straight forward although it involves a big amount
of calculations. This amount increases by the increased number of Wilson switched on.
Without any Wilson line the matter spectrum of all fixed points of a given sector coincides.
After switching on Wilson lines the degeneracy breaks into classes of fixed points that are
accompanied by the same Wilson line and with the same matter content. Also the gauge
group for every fixed point can vary, hence the notion of local GUTs, which means that
the certain fixed points can have a gauge enhancement to a GUT group like SO(10) and
matter representations are complete under them.
The gauge group of the untwisted sector is the 4 dimensional one and it is also a subgroup
of all local gauge groups. Also the super gravity multiplet is found in the untwisted sector,
so we have a closer look at it.
The constructing element of the untwisted sector is the trivial element g(1, 0). All elements
commute with g so that one has to project with every shift and every Wilson line. Let us
first look at the SUGRA multiplet. It is given by

|q〉 ⊗ αµ−1|0〉
h→ e−2πiq·vh|q〉 ⊗ αµ−1|0〉

The SUGRA multiplet can only be invariant for weights q that are orthogonal (mod 1) to
the shift vectors vN and vM . This is only true for the 4d weight vector qv = ±(1, 0, 0, 0)
which gives the 4d graviton and only for one choice of the spinorial roots qs that give the
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gravitino. For simplicity one can choose the weights qs = ±
(

1
2
, 1

2
, 1

2
, 1

2

)
. vN and vM in turn

have to satisfy ∑
i

viN = 0 ,∑
i

viM = 0 ,

which is just the Calabi-Yau condition from chapter 2.4 to guarantee N = 1 SUSY.
The untwisted gauge group is given by the states that give the Cartan elements and the
roots of the gauge groups that transform as

|q〉 ⊗ αI−1|0〉
h→ e−2πiq·vh |q〉 ⊗ αI−1|0〉

|q〉 ⊗ |P 〉 h→ e−2πi(q·vh+P ·Vh)|q〉 ⊗ αµ−1|0〉.

The Cartan elements have to have the same q’s as the SUGRA multiplet to be orthogonal
to the shifts. Therefore the 16 Cartan vector multiplets survive the projection, showing
that the rank of the gauge group cannot be reduced by orbifolding. The Cartans and
the charged gauge bosons and gauginos have to have the same 4d weights qs and qv, to
properly identify them to the same gauge multiplet. The unbroken roots of the gauge
multiplet therefore have to satisfy

P · VN = 0 mod 1 ,

P · VM = 0 mod 1 ,

P · Aα = 0 mod 1 ∀α .

Shift embeddings and Wilson lines project out some of the 480 roots of E8×E8 and break
the group down to a subgroup with the same rank. If qs and qv are not orthogonal to the
twists then we have charged matter8.
Since the weights of E8 have norm square 2 and consequently also the weights of the broken
gauge group as well and the untwisted spectrum of the E8’s splits up and simplifies the
analysis.

8An exception are singlets that can be interpreted as geometric moduli but this will not be discussed
in this work.
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Chapter 3

Classification of the Z2 × Z4 orbifold

The discussions in the last chapter were very general and served as an introduction to the
heterotic string and orbifold compactifications. In this chapter we will focus on the Z2×Z4

orbifold. In the spirit of the Mini Landscape searches [5], [6] we try to discuss the Z2×Z4

as completly as possible in order to set a good starting point for the discussion of models
with MSSM like properties.
In the last chapter it became clear by what determines the field spectrum and the gauge
group of a given orbifold geometry:

Shift embedding V2 and V4

Wilson Lines Aα Enters in−−−−−→
Mass equation
Orbifold phase

Here we will focus mainly on the classification of the shift embeddings V2 and V4 and deliver
some spectra with additional Wilson lines in chapter 4.
If one wants to embed the shifts v2 and v4, the simplest choice is the standard embedding
that automatically satisfies the modularity conditions:

V2 = (vi2, 0
13) ,

V4 = (vi4, 0
13) .

Since the modular invariance conditions are the only restrictions, more embeddings are
possible. The shifts will enter in the mass equation and the orbifold phase determining
the spectrum and the question arises whether there is a symmetry transformation between
shifts leading to the same spectrum. So the question this chapter addresses is, how many
inequivalent embeddings of V2 and V4 there are.

3.1 Symmetries of the spectrum

In order to investigate when spectra are equivalent, one should look at the symmetries
of the equations that determines them. To begin with, the modularity conditions on the
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shifts are given by

V2 =
ΛE8×E8

2
, (3.1.1a)

V4 =
ΛE8×E8

4
, (3.1.1b)

2
(
V 2

2 − v2
2

)
= 0 mod 2 , (3.1.1c)

4
(
V 2

4 − v2
4

)
= 0 mod 2 , (3.1.1d)

2(V2 · V4 − v2 · v4) = 0 mod 2 . (3.1.1e)

They enter the mass equation and the orbifold phase in the T (k, l) twisted sector:

Psh = P + kV2 + lV4 ,

M2
−

8
=
P 2

sh

2
− 1 + Ñ + δc = 0 ,

φ = e2πi(Psh·Vh−(qsh−N+N̄)·vh)e−2πi 1
2

(Vg ·Vh−vg ·vh) .

Clearly the isometries of the scalar product that enters the mass equation and the orbifold
phase and are also symmetries of the spectrum. These isometries are the automorphisms of
the Lie lattice from which the vectors originate. This will be analyzed in the next section.
One can also add a lattice vector to V2 and V4. Even though this does not change the
untwisted sector, it does affect the third modularity condition in equation (3.1.1a) and the
twisted spectrum. This will be analyzed in the next chapter.

3.2 Automorphism of E8 × E8

We are looking for the group of automorphisms of the E8 × E8 root lattice, i.e. the trans-
formations that leaves the group structure invariant. Basically there are two kinds of
automorphisms: The lattice automorphism Aut(Γ) and the inner automorphism IAut(G)
of the group G.
The lattice automorphisms Aut(Γ) are those automorphisms that permute simple roots αi
of the Dynkin diagram. In terms of the Cartan matrix

Ai,j = 2
αi · αj
αi · αi

,

these are permutations π of entries that leave the structure of the matrix invariant, i.e.

Aut(Γ) =
{
π ∈ Srank(G)|Aπ(i),π(j) = Ai,j

}
. (3.2.1)

The Dynkin diagram of E8 given in figure A.1 in appendix A shows that there are no lattice
automorphisms1.

1Interchanging the two E8 is considered when we reconstruct all embeddings from tensoring the E8

embeddings with itself.
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An inner group automorphism h ∈ IAut(G) acts on a group element x ∈ G as a conjugation

x
h→ b ◦ x ◦ b−1 . (3.2.2)

with ◦ being the group operation and b ∈ G. The automorphisms that are no inner ones
are called outer automorphism .
The automorphism group is then given as the semi-direct product of lattice and inner
automorphisms

Aut(G) = Aut(Γ) n IAut(G). (3.2.3)

Since E8 has no lattice automorphisms its automorphism group is given only by the inner
automorphisms.
Still we are interested in the automorphism group of a direct product of two E8s that can
be bigger then the direct product of two automorphism groups. However, elements of the
direct product G× G̃ transform as

(a, b)→ (x, y) · (a, b) · (x−1, y−1)

= (x ◦ a ◦ x−1, y ◦ b ◦ y−1) (3.2.4)

respecting the law of composition of elements of direct product groups. Thus we see that
the inner automorphism group of a direct product is indeed the direct product of the inner
automorphisms. Further information can be found in [7] and in [4].
Keeping this in mind we only need to care about the inner automorphisms of one E8 and
its eight dimensional shift embedding V .
Once we found all inequivalent shifts in one E8, we can combine them with themselves to
give a complete 16 dimensional E8×E8 vector in way that also the modularity conditions
of equation (3.1.1a) are fulfilled.

3.3 The Weyl Group

We are only interested in the inner automorphisms of the E8 root lattice. They are given
by the Weyl group [28]. The Weyl group itself is generated by Weyl reflections. These are
reflections on a hyperplane perpendicular to a simple root of the Lie lattice. In that way
every Weyl reflection σα is characterised by a root α and acts on a vector V ∈ E8 as

Ṽ i = (σV )i =V i − 2
α · V
α · α

αi

= (1i,j − αiαj)Vj. (3.3.1)

since α2 = 2. In the last equation it becomes clear that σα = σ−α and due to

σTασα =σασα

= (1− ααT )(1− ααT )

=1− 2ααT + α(α2)αT

=1
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it is also an orthogonal transformation as one would expect from intuitive notion of a
reflection.
Some examples of Weyl group elements are given by the simple roots α = (−1, 1, 06) and
α̃ = (1, 1, 06) that generate the Weyl reflections

σα =

 0 1
1 0

0

0 16×6

 , σα̃ =

 0 −1
−1 0

0

0 16×6



⇒ σασα̃ =

 −1 0
0 −1

0

0 16×6


Clearly σα is a permutation and σασα̃ gives a reflection of two components2.
Figure 3.1 shows a simple example of the three dimensional Lie lattice of SU(4). The root
lattice of SU(4) has rank three and therefore three simple roots that build up the lattice.
In figure 3.1 they are given by the vectors

α1 = (0, 1, 1)T , α2 = (1, 0,−1)T , α3 = (0,−1, 1)T (3.3.2)

representing the SU(4) Dynkin diagram:

α1 α2 α3

Since all 12 roots of SU(4) have the same length, they fit into a three dimensional cube
shown in part a.). In part b.) we illustrate a Weyl reflection σα2 which can be seen as a
reflection on a plane perpendicular to α2. This reflection in fact is the same as permuting
coordinates to (x, y, z) → (z, y, x). As one can see from the Dynkin diagram of SU(4)
there is also a permutation symmetry when we exchange α1 and α3. This is a lattice
automorphism that maps one complex representation to the conjugate one. Together with
the Weyl reflections this generates the outer automorphisms of SU(4). Let us now turn
to the actual problem of finding all inequivalent pairs of V2 and V4 shifts. To do so let us
suppose we already found all inequivalent shifts of V4. Then take a fixed candidate V4,f

and pair it up with all inequivalent V2 shifts that cannot be connected via Weyl reflections
σα. Since these transformations have to be seen as transformations of the whole lattice,
all E8 lattice vectors will transform under the Weyl reflection as

(V2, V4,f )
Weyl reflection−−−−−−−−→ (σαV2, σαV4,f ). (3.3.3)

2This can of course be extended to all components.
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a.)

x

y

z

b.)

x

y

z

α2 α2

α1

α3

Figure 3.1: Picture a.) shows the SU(4) cube and all its 12 roots lying on the edges. The
positive and simple ones are black while the others are grey. Picture b.) shows a Weyl
reflection on the plane perpendicular to a simple root α2 which corresponds to an change
of the x and z coordinate.

To guarantee invariance of the spectrum we have to demand that the Weyl reflections leave
V4,f invariant.

σαV4,f = (1− ααT )V4,f
!

= V4,f

⇔ α · V4,f
!

= 0 . (3.3.4)

So we have to demand that V4,f is orthogonal to the reflection root or equivalently that it
is parallel to the hyperplane of the reflection.

3.4 The strategy

In the further discussion we investige under which circumstances two shifts are connected
via a Weyl group element. A Weyl group element can then be a consecutive execution
of multiple Weyl reflections. For this we focus only on the symmetries of the lattice, in
particular of only one E8 factor taking modular invariance into account later. However, due
to the high symmetry of the E8 root lattice its Weyl group has 696.729.600 elements [29]
so even with latest computers, it is extremely time and memory consuming to generate all
these elements and then check whether the shifts V2 are related.
To do the calculations in a reasonable amount of time we check only for equivalence up to
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Number 4V4

0 (0,0,0,0,0,0,0,0)
1 (2,2,0,0,0,0,0,0)
2 (1,1,0,0,0,0,0,0)
3 (2,1,1,0,0,0,0,0)
4 (4,0,0,0,0,0,0,0)
5 (2,0,0,0,0,0,0,0)
6 (3,1,0,0,0,0,0,0)
7 (2,2,2,0,0,0,0,0)
8 (3,1,1,1,1,1,0,0)
9 (1,1,1,1,1,1,1,-1)

Table 3.1: Table of all inequivalent shift embeddings of Z4 taken from [12]. Notice the
shift number 3 which is the standard embedding for a Z4 orbifold.

Weyl reflections. Further equivalences can be checked at the level of the spectrum later.
For the analysis we used the 10 inequivalent Z4 shift vectors from [12] that are given in
table 3.1. We take these 10 V4 shifts and construct all possible V2 shifts for each one of
them. After this we relate the shifts V2 that give an equivalent spectrum.

3.5 Computer aided construction of inequivalent Z2

shifts

This section describes the most important parts of the Mathematica algorithm we wrote
to calculate all inequivalent V2 shifts3. Note that in the further discussions the shift

V2 =
8∑
i=1

niαi
2

with αi being the simple roots of E8. To be of order 2, we illustrate the shifts as 2V2 for
convenience. Our choice of simple roots of E8 is given in table D.1 in appendix D.
Clearly all components ni can be zero or one, since we consider half lattice vectors. The
Dynkin diagram of E8 shows that there is a maximal norm square of the shifts, such that
V2 is free of lattice vectors, which is 8! This becomes clear by looking at the only two
simple root combinations that can achieve that:

Since the scalar product of two adjacent roots is αiαj = −1, every additional root
would not change or even reduce the norm of the two V2,max combinations.

3We are highly grateful for the help of Matthias Schmitz.
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V2,max1 = α1 + α3 + α5 + α7

V2,max2 = α2 + α4 + α6 + α8 α1 α2 α3 α4 α5 α6 α7

α8

86420
Cutting out−−−−−−→

S7 Norm #Elements

0 1

2 240

4 2160

6 6720

8 17520

Figure 3.2: A schematical picture how the sets illustrated as spheres of norm 0,2,4,6 and
8 are cut out of the cube. On the right, the number of vectors that are contained in each
sphere are given. Notice that the norm square 2 sphere is the set of the 240 roots of the
adjoint representation of E8.

3.5.1 Generating all vectors

Since the maximal norm square of V2 is 8 and V2 can also be a spinorial root so, we know
that a component has to fulfill4 2V i

2 ∈ Z so that the maximal component is

V i
2,max =

⌊
(
√

8 · 2)
⌋

= 5 .

Using this, we generate all vectors V2,cube =
8∑
i

ai
2

such that ai ∈ [−5, 5] with V 2
2,cube ≤ 8

which is an 8 dimensional cube of side length 10.
When constructing systematically all vectors in the cube, we look for the ones that have a
norm square divisible by two and are given by integer linear combinations of the positive
simple roots.
With this procedure we cut out the vectors given by the intersection of spheres of norm
square 0,2,4,6 and 8 and the E8 lattice, schematically depicted in figure 3.2.

4Note our convention that V2 has already been multiplied by a factor of two!
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3.5.2 Generating the Weyl reflections

Now that we have all vectors we have to merge them into equivalence classes. To relate
shifts by Weyl reflections we go step by step:

1. Fix one of the 10 V4,f ’s.

2. Take all roots that satisfy αi · V4,f = 0 and get the set of possible reflections.

3. All vectors in one class get a label ’class’ thats value shows their equivalence class.

Vector class
V1 1
V2 2
V3 3
. .
. .

4. Go through the complete list and fix one of the vectors to Voriginal with equivalence
class ′class′original. Then calculate all possible Weyl reflected vectors VWeyl,i.

Vector class

Voriginal : V1 1
↓ V2 2

VWeyl,3 : V3 3
. .
. .

5. VWeyl,i has to be in the same sphere since Weyl reflections are orthogonal transfor-
mations so that we can compare the equivalence class ’classoriginal’ with the one of
VWeyl,i which is denoted as classWeyl.

6. If the classes are different then two equivalence classes have to be merged together.
The list of equivalence classes of the vectors is run through and the value of classWeyl

is replaced by classoriginal.

Vector class
Voriginal : V1 1
↓ V2 2

VWeyl,3 : V3 1
. .
. .

A schematical picture is given in figure 3.3. In this way sets of inequivalent vectors are
formed, such that the amount of vectors is hugely reduced. The number of equivalence
classes for V4,f = (3, 1, 1, 1, 1, 1, 0, 0) for example is 151. Table 3.2 shows the reduction of
all shift embeddings.

30



a.) b.)

Weyl Reflections−−−−−−−−−→

c.)

Figure 3.3: Schematical picture how the set of all vectors a.) is split up into sectors of
different equivalence classes c.). This happens in picture b.): There a part of the sphere is
taken and points/vectors on the sphere are identified by Weyl reflections drawn as arrows.

3.5.3 Merging classes of different norms

Since for every V4,f we have a number of order 100 equivalence classes. We want to reduce
this amount further. To do so we first investigate whether there are combinations of Weyl
reflections that are invalid by themselves, i.e

σαV4,f 6= V4,f ,

but could identify the vector in higher combinations. We checked this for Weyl group
elements up to order three but we could never find any valid combination! This is the
step where we miss higher elements that leave V4,f invariant and under which we relate V2

elements because we could not test for all Weyl group elements. However to identify such
equivalent embeddings we test them later at the level of the complete spectrum.
To decrease the amount of vectors further we give up the inequivalence by Weyl reflections
and allow two embeddings to be equivalent up to lattice translations. As mentioned earlier
adding lattice vectors λ to V2/4 changes only the twisted matter spectrum while the un-
twisted spectrum and especially the gauge group stays the same. Therefore these models
are called brother models [3].
To compensate the loss of inequivalence we will construct all lattice translations that lead
to inequivalent models in section 3.5.6.
When we allow identification up to lattice translations we can merge whole sets of equiva-
lent classes: Assume that one finds V2 and Ṽ2 from two distinct equivalence classes which
differ by a lattice translation

V2 = Ṽ2 + λ |σ· ,
⇔ σV2 =σṼ2 + σλ ,

V
′

2 = Ṽ
′

2 + λ
′
. (3.5.1)

In the second line we multiplied with any allowed Weyl reflection such that also all other
elements in the two sets differ by a lattice shift. This simplifies the computation because
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0 2 4 6 8

Figure 3.4: Schematic view of how equivalent classes of different norms are merged when
elements differ by a lattice vector.

one instance fulfilling equation (3.5.1) is enough to completely render two sets equivalent.
This is graphically depicted in figure 3.4. According to the identification in equation (3.5.1)
the difference in the norm square of two equivalent vectors

Ṽ2
2 − V 2

2 = 2σV2 · λ+ λ2 ,

∈ Z + 2Z = Z , (3.5.2)

has to be by an integer or in our convention of writing 2V2

Ṽ2
2 − V2 ∈ 4Z , (3.5.3)

four times an integer. This is depicted in figure 3.4 because there are no arrows relating
two neighboured spheres5. Table 3.2 shows how many equivalent classes exist for each of
the 10 V4 shifts. The table in the appendix D shows also one V2 as representative.
From the table it becomes clear that we could reduce the amount of shifts from 781 to 84
which is almost a factor of 10. The last column of table 3.2 shows also how the amount
gets further reduced to 75 by identifying embeddings that lead to the same spectrum and
are maybe related by higher equivalence relations. See section 3.5.7 for the discussion.
By this we got all inequivalent embeddings that are possible. Still these are only embed-
dings in one E8, so we have to join them together in a way that the modularity conditions
are fulfilled.

3.5.4 Determining the gauge group

Although the shifts have not yet been recombined to full 16 dimensional lattice vectors,
the 8 dimensional ones are sufficent to get the untwisted matter spectrum as well as the
gauge group since here both E8’s stay decoupled! So in this section it is described how we
get the gauge group associated to each of the gauge embeddings in six steps:

5The only exception is the zero norm set that can only be related to the norm 8 sphere.

32



4V4,f V2 Eq. Classes Lattice identification Further reduction

(0,0,0,0,0,0,0,0) 6 3 3
(2,2,0,0,0,0,0,0) 31 6 6
(1,1,0,0,0,0,0,0) 31 6 6
(2,1,1,0,0,0,0,0) 78 9 9
(4,0,0,0,0,0,0,0) 48 7 6
(2,0,0,0,0,0,0,0) 48 7 6
(3,1,0,0,0,0,0,0) 153 13 12
(2,2,2,0,0,0,0,0) 146 12 9
(3,1,1,1,1,1,0,0) 152 12 10
(1,1,1,1,1,1,1,-1) 88 9 9
Sum of Shifts: 781 84 75

Table 3.2: Table of equivalent classes before and after merging classes whose elements
differed by a lattice vector. Notice that (2, 07) and (4, 07) are the same on the level of
equivalence classes as well as (1, 1, 06) and (2, 2, 06). In the last column we further reduce
the shifts that give the same spectrum.

1. We take only the positive roots P of E8 that fulfill

P · V2 = 0 mod 1 ,

P · V4 = 0 mod 1 .

2. To identify the groups, we need the positive and simple roots. Since non-simple roots
can be decomposed into integer linear combinations of simple ones we are looking for
the roots for which this is not possible:

Pi 6= Pj + Pk ∀ j , k .

3. We divide the simple roots into sets that only contain roots that are not orthogonal
to at least one other root in the set.
The number of simple roots in a set (j) gives the rank of the gauge group Rank(j) and
the number of sets gives the amount of semi-simple non-Abelian Lie groups NGroups.
Since the orbifold projection does not act on the 8 Cartan elements αI−1 of E8 the
rank is preserved. Consequently the number of U(1)s is given

#U(1) = 8−
NGroups∑

i

Rank(i)

4. To identify a semi simple gauge group we calculate its Cartan matrix

Aij = 2
Pi · Pj
P 2
i

.
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4VZ4 2VZ4 Group Decomposition

(3,1,1,1,1,1,0,0) (0, 0, 0, 0, 0, 0, 0, 0) SU(8)×SU(2) ♣
(−1,−1, 0, 0, 0, 0, 0, 0) SU(6)×SU(2)2×U(1) ♠
(−1, 0, 0, 0, 0, 0, 1, 0) SU(6)×SU(2)×U(1)2 ♦
(−1, 0, 0, 0, 0, 1, 0, 0) SU(4)2×SU(2)×U(1)
(0,−1, 0, 0, 0, 0, 1, 0) SU(6)×SU(2)×U(1)2 ♦
(0,−1, 0, 0, 0, 1, 0, 0) SU(6)×SU(2)2×U(1) ♠
(0, 0, 0, 0, 0, 0,−1, 1) SU(8)×SU(2) ♣

(−1, 0, 0, 1,−1, 1, 0, 0) SU(6)×SU(2)2×U(1) ♥
(−1

2
,−3

2
, 1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2
) SU(8)×U(1)

(−1,−1,−1, 0, 0, 0, 0, 1) SU(4)2×U(1)2

(0,−1,−1, 0, 0, 0,−1, 1) SU(4)2×SU(2)×U(1)
(0, 0, 1,−1,−1,−1, 0, 0) SU(6)×SU(2)2×U(1) ♥

Table 3.3: The 13 equivalence classes of Z2 shift embeddings for V4,f = (3, 1, 1, 1, 1, 0, 0)
with a given representative and their corresponding gauge group. Same symbols in the last
column signal that these embeddings could be equivalent.

Since all roots of E8 have the same length, the Cartan matrix is symmetric and hence
only simply laced Lie groups can appear.

5. The Cartan matrix gets the canonical form by reordering the simple roots such that
also the Dynkin labels of the matter representations are in the canonical form.

As an example the V4,f shift (3, 1, 1, 1, 1, 1, 0, 0) and all its compatible V2 shifts as well as
their gauge groups are given in table 3.3. The whole table of the shift vectors and their
corresponding gauge groups for all 10 V4,f is given in table D.2 in appendix D. Table 3.3
already shows that there are still some embeddings that give the same gauge group as
others and thus may be equivalent to them. This could mean that there are equivalences
that can relate these embeddings we have not found. But we check them on the level of
their spectra in section 3.5.7. Before calculating the spectra however, we first have to pair
the shifts to form modular invariant E8 × E8 vectors.

3.5.5 Pairing the shifts

Now we pair the shifts to form 16 dimensional E8 × E8 vectors. At this point we have to
make sure that the three modularity conditions are fulfilled

4(V 2
4 − v2

4) = 0 mod 2 (3.5.4)

2(V 2
2 − v2

2) = 0 mod 2 (3.5.5)

2(V2 · V4 − v2 · v4) = 0 mod 2. (3.5.6)
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To do so we first go through the 10 Z4 vectors, fix a V4,1 vector and pair it with another
shift vector V4,2 such that the first modularity condition is fulfilled. Then we fix a V2,1 shift
vector that is compatible with V4,1 and pair it with V2,2 that is compatible with V4,2 such
that they fulfill the second modularity condition. Since both E8’s can be interchanged, we
also have to guarantee that we do not over-count.
The combined set V4 = (V4,1, V4,2) and V2 = (V2,1, V2,2) has then to be checked to fulfill the
third modularity condition as well.
Since we allowed to add lattice vectors to the shifts when we did the classification we can
use this to weaken the third modularity condition by shifting

V2 → V2 + α with α ∈ ΓE8×E8

V4 → V4 + β with β ∈ ΓE8×E8

The first two conditions are not changed by this action since the lattice is integral and
even:

4(V 2
4 − v2

4)→ 4(V 2
4 − v2

4) + 4β2 + 2(4V4 · β)

= 4(V 2
4 − v2

4) + 4Z + 2Z ≡ 0 mod 2

and similarly for the second condition. The third condition changes under the shifts to

2(V2 · V4 − v2 · v4)→ 2(V2 · V4 − v2 · v4) + 2V2 · β + 2V4 · α + α · β

= 2(V2 · V4 − v2 · v4) + Z +
Z
2

+ 2Z ≡ 0 mod
1

2
.

Essentially the V4 · α scalar product weakens the third modularity condition from mod 2
down to mod 1

2
such that 2(V2 · V4− v2 · v4) = M can still be half integer valued, which by

adding lattice shifts later.
Using this method we obtain 187 models that get reduced in the following to 144 given
in table D.3 in appendix D.

3.5.6 Adding lattice vectors

As one can see in table D many of the 144 models still do not satisfy the third modularity
condition. We will now cure this by adding lattice vectors and also try to recapture the
loss of inequality we introduced when we classified the different shift embeddings. When
we add lattice vectors α and β to V2 and V4 we can ask how many choices there are that
lead to different models.
To answer this we have to check how the mass equation and orbifold phase transforms:
First we start by considering Psh = P + kV2 + lV4 and P that solves the mass equation

(P + kV2 + lV4)2

2
− 1 + Ñ + δc = 0 .
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When we add lattice vectors this changes to(
P̃ + k(V2 + α) + l(V4 + β)

)2

2
− 1 + Ñ + δc = 0 .

Clearly P̃ = P − kα − lβ solves the mass equation as well, so the mass equation is not
changed and neither is Psh, which enters the orbifold phase.
The orbifold phase under the projection element h(θm ·ωn, nαeα) with Vh = mV2 +nV4 and
vh = mv2 + nv4

φo = e2πi(Psh·Vh−(qsh−N+N̄)·vh)e−2πi 1
2

(Vg ·Vh−vg ·vh) (3.5.7)

changes under the addition of lattice vectors to

φ = φoe
2πi 1

2
(kn−ml)[2V2·−Z−M2 ] . (3.5.8)

where M = 2(V2 ·V4−v2 ·v4) is the mismatch in the third modularity condition. A detailed
derivation of the formula is found in appendix C. In the literature this phase is called the
brother phase [3].
A short look at the phase reveals that the untwisted matter spectrum and the gauge group
does not change as expected for brother models.
Another observation is that 2V2 ·β ∈ Z, so there can be at most two different brother phases
leading to different models. This means that we get at most two different brother
models by adding lattice vectors to the shifts and that the orbifold phase difference
between these two models can only be eπi!

3.5.7 Further reduction

Now we have the complete shift embeddings and their gauge groups as well as the possibility
to construct both brother models. As mentioned before, there still exists the possibility
that we have equivalent embeddings that are related by higher equivalences. To filter out
these as well, we have to compare the complete matter spectra. The program we used get
the spectrum is described in section 4.4. The strategy for the last filter is thus:

1. Take two models with the same (V4,1)⊕ (V4,2).

2. Look for models with the same gauge group.

3. Take two models with the same V2,1 but different V2,2
6.

4. V 2
2,2 -Ṽ 2

2,2 has to be zero mod 4 according to equation (3.5.2).

5. Compare the matter spectra of both brother models.

If their spectra coincide then the embeddings V2,2 and Ṽ2,2 are equivalent. When this is the
case, we highlighted embeddings with the same letter right next to the shift vector as in
the example of (3, 1, 1, 1, 1, 0, 0) in table 3.4 as well as in the full table D.2 in appendix D.
From the 187 we started with, we thus eliminated 43 that were equivalent to other ones,

6We do the same also by fixing V2,2 and comparing V2,1.

36



4VZ4 2VZ2 Group Decomposition

(3,1,1,1,1,1,0,0) (0, 0, 0, 0, 0, 0, 0, 0) SU(8)×SU(2)
(−1,−1, 0, 0, 0, 0, 0, 0) SU(6)×SU(2)2×U(1) A
(−1, 0, 0, 0, 0, 0, 1, 0) SU(6)×SU(2)×U(1)2 B
(−1, 0, 0, 0, 0, 1, 0, 0) SU(4)2×SU(2)×U(1)
(0,−1, 0, 0, 0, 0, 1, 0) SU(6)×SU(2)×U(1)2 B
(0,−1, 0, 0, 0, 1, 0, 0) SU(6)×SU(2)2×U(1) A
(0, 0, 0, 0, 0, 0,−1, 1) SU(8)×SU(2)

(−1, 0, 0, 1,−1, 1, 0, 0) SU(6)×SU(2)2 ×U(1) C
(−1

2
,−3

2
, 1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2
) SU(8)×U(1)

(−1,−1,−1, 0, 0, 0, 0, 1) SU(4)2×U(1)2

(0,−1,−1, 0, 0, 0,−1, 1) SU(4)2×SU(2)×U(1)
(0, 0, 1,−1,−1,−1, 0, 0) SU(6)×SU(2)2×U(1) C

Table 3.4: The reduced list of V4,f = (3, 1, 1, 1, 1, 1, 0, 0). The same letter in the las column
indicates an equivalent spectrum.

GUT Gauge Group Number of Models

SO(10) 35
E6 26

SU(5) 25

Table 3.5: Summary of GUT candidates in the 144 inequivalent models.

such that we end up with 144 inequivalent ones given in table D.3.

3.6 Comment on the models

To incorporate our standard model in a unified theory we are looking for E6, SO(10) and
SU(5) models. Table 3.5 shows how many different instances of the 3 most common GUT
models we could find. The most promising models are the SO(10) and E6 models since one
complete SM model family can be incorporated in one representation, the 16 of SO(10)
or the 27 of E6 as pointed out in appendix B. We also have smaller GUT groups like
SU(5) and SU(4)×SU(2)2 but they have the additional problem that one SM family comes
from multiple representations. In section 4.5.3 we will point out that it is much harder
to control the amount of net families in that groups. Besides that it turns out that small
representations are also very likely to be charged under hidden gauge groups as well.
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Chapter 4

A Benchmark Model

In this section we present a benchmark model with an SO(10) gauge group in our Z2×Z4

classification that gets broken down to the SM gauge group and results in three net families.
To do so we first discuss the geometry we used in our orbifold models. After that we present
a general scheme in our models how the Wilson lines have to be introduced and briefly
describe the computer program we wrote to get the spectrum. We then describe some
good candidates without Wilson lines. Finally we pick out one of them as our benchmark
model and calculate the complete spectrum.

4.1 The geometry of the orbifold models

Up to now we could hold the discussion about the Z2 × Z4 gauge embedding very general
and did not need the actual geometry beyond the two shift vectors v2 and v4 that enter
the modularity conditions. Now we need to discuss the geometry in order to calculate the
spectrum.
For our models we take the factorisable SU(2)2×SO(4)2 Lie lattice with the two common
shift vectors

v2 =
1

2
(0, 1,−1, 0) ,

v4 =
1

4
(0, 0, 1,−1) .

Including the untwisted sector there are 8 sectors but two of them share the same fixed
point structure. All five twisted sectors a given in table 4.1.
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e2 e4 e6

e1 e3 e5

Sector: T (0, 1)/T (0, 3) Fixed Tori: 4 Fixed Toris: 0

e2 e4 e6

e1 e3 e5

Sector: T (0, 2) Fixed tori: 4 Fixed toris: 6

e2 e4 e6

e1 e3 e5

Sector: T (1, 0) Fixed tori: 8 Fixed toris: 4

40



e2 e4 e6

e1 e3 e5

Sector: T (1, 1)/T (1, 3) Fixed Points: 16 Fixed Pointss: 0

Sector: T (1, 2) Fixed tori: 8 Fixed toris: 4

e2 e4 e6

e1 e3 e5

Figure 4.1: The fixed point structures of the five independent twisted sectors. Note that
the amount of special fixed points is highlighted with a subscript.

The geometry has some features making it more complicated than the simple Z3 example
from section 2.4.1, so it requires futher explanation.
Let us start with the T (0, 1)/T (0, 3) sector. This is a pure Z4 sector that has 2 fixed points
in the second and third torus. The inequivalent fixed points are framed by a grey box and
pair to 4 fixed tori. The T (1, 1)/T (1, 3) is the mixed Z2×Z4 sector that has 4×2×2 fixed
points, in contrast to all other sectors which have only fixed tori. However, for our choice
of a left chiral super field1, one cannot solve the mass equation in the T (1, 1) sector and
this sector will always be empty.

1Our concention is that a left chiral super field has positive first component.
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Let us now turn to the T (1, 0) sector. This one has 4 fixed points in the first and second
torus. Two of them are also Z4 fixed points, depicted as black dots but two of them are
purely Z2 fixed points shown as black squares. The Hilbert spaces of these two elements
are mapped onto each other by a suitable Z4 orbifold element. This can be seen by looking
at these fixed points:

gs,1(θ, e3) and gs,2(θ, e4) .

Conjugation with a Z4 element h(ω, 0) on gs,1 using equation (2.4.13a) yields

h−1gs,1h = g(θ, ω−1e3) ,

= gs,2(θ,−e4) .

The fixed points corresponding to the conjugacy classes of gs,1 are mapped to the ones2 of
gs,2. In the figures this is depicted by the dashed arrow that identifies two fixed points. The
same behaviour is found in the T (0, 2) sector because here we encounter the Z2 subgroup of
Z4. It is easiest to see this by simply taking all 16 fixed points and conjugate with h(ω, 0):

1. The four Z4 fixed points are mapped to themselves:

g1(ω2, 0) ' g1(ω2, 0)

g2(ω2, e3 + e4) ' g2(ω,−e4 + e3)

g3(ω2, e5 + e6) ' g3(ω, e6 − e5)

g4(ω2, e3 + e4 + e5 + e6) ' g4(ω,−e4 + e3 + e6 − e5).

2. The 12 Z2 fixed points on the other hand are identified pairwise:

g5(ω2, e6) ' g11(ω,−e5)

g6(ω2, e4) ' g12(ω, e3)

g7(ω2, e4 + e6) ' g13(ω, e3 − e5)

g8(ω2, e3 + e6) ' g14(ω,−e4 − e5)

g9(ω2, e4 + e5 + e6) ' g15(ω, e3 + e6 − e5)

g10(ω2, e3 + e4 + e5) ' g16(ω,−e4 + e3 + e6).

These fixed points are the ones drawn in the picture. Note that there are 3×3 fixed points
from pairing up the fixed points in the grey boxes but also a unique tenth combination
highlighted with a black arrow.
The considerations above show that some fixed points are identified under the orbifold.
These fixed points are exactly those that do not trivially commute with any h(ω, nαeα)
and therefore have a different centraliser. They are replaced by h(ω2, nαeα) because they

2The negative coefficient of e4 shows that the fixed point lies outside the fundamental domain but
coincides with gs,2 inside it.
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1 2 3 4 5 6 7 8
Sector T (0, 0) T (0, 1) T (0, 2) T (0, 3) T (1, 0) T (1, 1) T (1, 2) T (1, 3)

Fixed pointsn 0 4 4 4 8 16 8 16
Fixed pointss - - 6 - 4 - 4 -

Table 4.1: The number of normal and special fixed points highlighted with a subscript.

lie in the Z2 subgroup of Z4 and do commute.
As a consequence, at these special points the projection with respect to ω/v4 i.e under V4

gets multiplied by a factor of two and therefore equal to one for more states.
The amount of fixed points is given below every sector and special fixed tori are denoted
with a subscript s. The rule is that every fixed point that is not a pure Z4 fixed point must
be a special one and enjoys relaxed projection conditions.
Table 4.1 summarizes the amount of fixed points and special fixed points in all sectors.

4.2 The brother phase and special fixed points

The relaxed projection conditions make special fixed points particularly interesting. A
state that appears at a fixed point will also appear at the special fixed point in the same
sector.
We can now use the knowledge we gained about the brother phase and see how the sectors
are affected by it: Let us assume the two brother models fulfill all modularity conditions
already. Matter originating at a fixed point of the constructing element g(θk · ωl, nαeα)
in one model will get the phase shift φ∆ in the orbifold phase when one projects with an
centraliser element h(θm · ωn, nβeβ) given by

φ∆ = eπi(kn−lm) . (4.2.1)

From this we can see that all special fixed points, that are projected with n = 2 at a sector
with an even l, are not affected by φ∆ while the normal fixed points usually are. Especially
in the fifth twisted sector T (1, 0) the special fixed points are invariant while the normal
ones gets a phase such that the local spectrum is altered. Also the third twisted sector
T (0, 2) is unique in the sense that it is not affected at all. The detailed argumentation and
the effect on all twisted sectors is given in appendix C.1.
As a rule one can see that the untwisted and the T (0, 2) sectors as well as the matter at
the special fixed points are not affected by the brother phase.
These rules give some control over the spectrum by switching to the brother model and
give an intuition what to expect.
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Gut Gauge Group Needed Wilson lines
E6 3

SO(10) 2
SU(5) 1

Table 4.2: Table of the number of Wilson lines needed to break the GUT gauge group
down to the SM gauge group.

4.3 Fixed point degeneracy and the need for Wilson

lines

In chapter 3 we found many promising GUT gauge groups that are summarised in table
4.2. If we want to break the gauge group further down at this stage we have to assign
Wilson lines.
The geometry we chose allows for four Wilson lines: Two in the first torus since this is the
pure Z2 torus, and one in the second and the third torus each, since there the two basis
vectors are identified under a Z4 rotation. The order of the Wilson lines is obviously in
the first torus. But also the other Wilson lines have order 2, since Z4 has a Z2 subgroup
such that there are space group elements

(ω2, eβ) · (ω2, eβ) = (1, ω2eβ + eβ) = (1, 0) for β = 3, 4, 5, 6 (4.3.1)

forcing the Wilson lines in the second and third torus to be of order two as well.
In the end we have four Wilson lines of order two at disposal. A rough rule of thumb is,
that one can break N/2 simple roots of a gauge group with one Wilson line of order N. This
means that we need at least one, or up to three Wilson lines to break our GUT models
down to SU(3)× SU(2)× U(1). The minimal amount of needed Wilson lines to break to
the SM gauge group is also depicted in table 4.2. For the standard model it is also crucial
to have three generations of standard model families.
Anyhow, if a family and its conjugate appear in the spectrum i.e. a 16 and a 16 of
SO(10) then one can decouple them from the spectrum of the low energy effective action
by assigning a vev to a singlet S or a product of them in the super potentialW of the form

W ⊃ S1616 (4.3.2)

and give them a mass at the GUT scale. Of course this term has to satisfy all string
selection rules found in [30]. But at this point we worry only about the net number of
families and the problem of decoupling is not addressed here. In this way one would move
away from the orbifold point where no field has a vev.
In our calculated spectra, however, it turns out that there is always an even net number of
families in the untwisted sector. A look at the degeneracy of the fixed points in table 4.1
reveals that this is always an even number as well. Thus we also have to consider in which
tori we should switch on Wilson lines to break the degeneracy down to an odd number. The
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e2 e4 e6

e2 e4 e6

A1

Figure 4.2: The T (1, 0) twisted sector with one Wilson line in the e1 direction. Note that
the previous equivalent class of fixed points is now broken into two.

Wilson lines can project out different representations at the various fixed points depending
on the local gauge group. Knowing how the degeneracy breaks is extremely useful in the
process of selecting models that can in principal lead to three net families without making
a brute force search.
To get a good model with three net families and SM model gauge group we used the
following strategy:

1. Get schemes how degeneracies break by switching on Wilson lines in various tori.

2. Get matter spectra without Wilson lines.

3. Find models that can have three net families by breaking the fixed point degeneracy
via a possible scheme.

4. Get the full spectrum including Wilson lines.

4.3.1 Breaking the fixed point degeneracy with Wilson lines

The introduction of Wilson lines will change all projection conditions and local shits of the
fixed points, but we can still collect classes of fixed points that have the same local shifts
and the same projection conditions, as we already did when dividing in normal and special
fixed points.
An easy example of how the classes of fixed points split by one Wilson line is shown in
figure 4.2. The fixed points on the left of the first torus are in one class. The constructing
elements of them have no shifts in the direction of the Wilson line A1. Consequently the
local shift of the strings attached to them is not changed. Also all centraliser elements
have no element associated with the Wilson line. So let us take the constructing element
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g(θ, e2). The six generating elements of the centraliser are

1. h(θ, e2) 2. h(ω, 0)
3. h(θ, e2 + e5) 4. h(ω, e5)
5. h(θ, e2 + e6) 6. h(ω, e5 + e6)

As one can see there is no element in the e1 direction, so this fixed point does not feel the
Wilson line at all. This is in contrast to the two other fixed points of the first torus. Let
us take the constructing element g(θ, e1). Its centraliser is

1. h(θ, e1) 2. h(ω, 0)
3. h(θ, e1 + e5) 4. h(ω, e5)
5. h(θ, e1 + e6) 6. h(ω, e5 + e6)

This time there are three elements that include the translation in the e1 direction. For a
twisted string at this fixed point, not only the local shifts is changed due to the constructing
element but also the twist θ comes always together with a Wilson line, such that the matter
and the local gauge group are different to the ones of the first example. In this case the
8 + 4s fixed points in this sector get broken down to 4 + 2s that do not feel the Wilson line
at all: Their mass equation is still

M2
−

8
=

(P + kV2 + lV4)2

2
+ Ñ − 1 + δc ,

and in this particular case all centralisers do not even include e1. It has the same matter
content as found without the Wilson line. The left-mover mass equation of the other fixed
points changes to

M2
−

8
=

(P + kV2 + lV4 + nαAα)2

2
+ Ñ − 1 + δc .

Additionally, the centraliser introduces the Wilson lines into the projection, leading to
locally different gauge groups. The task is to find a set of Wilson lines that breaks to the
SM gauge group, fulfills the modularity conditions and projects out the right amount of
families. The analysis of the conditions of states have been done for all 16 combinations
and is summarised table 4.3. A deeper analysis can be found in [13]. Table 4.3 shows the
16 combinations of how the four Wilson lines can be switched on. In addition, we give the
degeneracy of fixed points where mass equation and projection conditions are the same
and unaffected by the Wilson lines.
Since there is the problem that we always have an even number of families we need a
Wilson line configuration that breaks the multiplicities to an odd number. To achieve this
we need at least two Wilson lines , i.e. schemes 6 and 11. All other configurations with
more than two Wilson lines are viable as well.
It should be noticed that these rules are restricted. It is too complicated to see whether
there appear some new representations in sectors that are affected by Wilson lines. When
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Scheme W1 W2 W3 W4 T (0, 1or3) T (0, 2) T (1, 0) T (1, 1or3) T (1, 2)
1 - - - - 4 4 6 8 4 16 8 4
2 1 - - - 4 4 6 4 2 8 4 2
3 - 1 - - 4 4 6 4 2 8 4 2
4 - - 1 - 2 2 2 2 4 4 8 8 4
5 - - - 1 2 2 2 2 8 4 8 4 4 0
6 1 1 - - 4 4 6 2 1 4 2 1
7 1 - - 1 2 2 2 2 2 2 4 4 2
8 1 - - 1 2 2 2 2 4 2 4 2 2
9 - 1 1 - 2 2 2 2 2 2 4 4 2
10 - 1 - 1 2 2 2 2 4 2 4 2 2
11 - - 1 1 1 1 3 0 4 4 4 4 4
12 1 1 1 - 2 2 2 2 1 1 2 2 1
13 1 1 - 1 2 2 2 2 2 1 2 1 1
14 1 - 1 1 1 1 3 0 2 2 2 2 2
15 - 1 1 1 1 1 3 0 2 2 2 2 2
16 1 1 1 1 1 1 3 0 1 1 1 1 1

Table 4.3: List of the 16 combinations of Wilson lines and the degeneracies of each fixed
point. A 1 signals if the Wilson line is switched on. The numbers in the count how
many states do not feel the local shift in the mass equation and have the same projection
conditions.

we consider also sectors that are affected by Wilson line projections it is hard to say which
representations are projected out, like in the untwisted sector. The values in the table
especially the unaffected matter fixed points that posses the full unbroken gauge group. In
this way table 4.3 gives an intuition how to assign the Wilson lines. One should also keep
in mind that one has to check which representations survive the projection of the Wilson
lines. As said, this is very hard to predict and in the end only the complete spectrum gives
clarity.

4.4 Program for determining the spectrum

This section briefly discusses a program that calculates the spectrum of our Z2×Z4 orbifold
model. The detailed description can be found in [13].
A schematic outline is given in figure 4.3. We will get the spectrum in seven steps. Steps
1 and 2 will deal with the right-moving side, determine all the fixed points and solve the
mass equations. Steps 3 and 4 specify the left-movers shift embedding and Wilson lines.
In the last three steps we join left and right-movers to get the spectrum.
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Right-movers

1. Find fixed points

2. Solve mass equation

Left-movers

3.Mod. invariant Shifts 

4. Wilson lines 

Join

5. Degeneracies

6. Untwisted spectrum

7. Twisted spectrum

Figure 4.3: The schematic seven steps we followed to get the spectrum.

4.4.1 Right-movers

1. Fixed points
In the first part the twist matrices θ and ω in the lattice basis are specified. Then we assign
names to the twisted sectors. After that the fixed points in the fundamental domain and
their sets of commuting elements Zg is found.

2. Mass equation and phase
The left-mover is a 4 dimensional vector such that the mass equation can easily be solved.
This is done for all sectors with all possible oscillator configurations. Finally their scalar
products with v2 and v4 are calculated which gives a tuple that will be used to com-
pensate the orbifold phase from the right-movers and are of the form (R · v2, R · v4) with
Ri = qsh

i −N i + Ñ i.

4.4.2 Left-movers

3. Choose modular invariant pair and brother model
The information of the 144 inequivalent models is provided as well as the additional phase
to cure the third modularity condition and decide a brother model.

4. Fix Wilson lines
Wilson lines which fulfill the modularity conditions (2.5.6a) are introduced and specified
in which torus they act.
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4.4.3 Join left-and right-movers

5. Wilson lines and degeneracy
Equivalence classes of fixed points that have the same constraints with respect to the mass
equation and the projections are identified in order to keep the calculation simple.

6. Calculate untwisted spectrum
The root P of E8 × E8 that are orthogonal (mod 1) to the Wilson lines, and satisfy the
two conditions

(P · V2, P · V4) = (R · v2, R · v4) = 0 mod 1 (4.4.1)

for all right-movers R, are found. If the projection conditions are fulfilled, the highest
Dynkin label is calculated to identify the representation.

7. Calculate twisted spectrum
The left-movers mass equation is solved according to the algorithm proposed in [31] for
every twisted sector and fixed point class. The projection conditions imposed by the cen-
traliser are computed and tried to be solved by an appropriate right-mover. If the state is
invariant, the highest Dynkin label with respect to the 4d gauge group is given such that
the representation can be identified.

4.5 Models without Wilson lines

In the previous chapter it was made clear how to get the matter spectrum. Following our
strategy we first look at the matter spectrum of our models without Wilson lines and then
try to apply Wilson lines in one of our schemes from table 4.3 to break down to three
families. Some interesting candidates are now presented as well as the the Wilson line
configuration needed to break the degeneracy down in the right fashion. However, one
should note that it is not trivial to find Wilson lines that fulfill all modularity conditions
and break the gauge group as well as the representations in a desired way.

4.5.1 E6 models

One standard model family can be accommodated in a 27 or a 27 of E6. For a general
discussion of the GUT groups see appendix B. To keep the discussion simple, only matter
that is charged under E6 is given since all the other matter is charged under the hidden
gauge group and will not interact with the standard model matter.
The first example is given in table 4.4 that shows a matter spectrum and how we can
control its spectrum. Note that the breaking of the gauge group is not given in the table
since we are only interested the right amount of net families. First we switch to the other
brother model that adds additional matter content at the normal fixed points of the fifth
sector. The three Wilson lines will then break E6 to SU(3)×SU(2)× U(1)3 and reduce the
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Model: 62, Gauge Group: E6×U(1)2|SO(10)×SU(4)

(a) Matter content at the 8 sectors of model 62.

Twisted Sector 1 2 3 4 5 6 7 8
27 of E6 1·(27)1·(27) 0 0 0 0 0 0 0

FP. Degeneracy 1 4 4 4 8 16 8 16

27 of E6 - - 0 - 1·(27) - 0 -
FP degeneracys - - 6 - 4 - 4 -

Total Amount of 27’s 1·(27)1·(27) 0 0 0 4·(27) 0 0 0

(b) Matter content at the 8 sectors of the brother model and 3 Wilson lines.

Twisted Sector 1 2 3 4 5 6 7 8
27 of E6 1·(27)1·(27) 0 0 0 1·(27) 0 0 0

FP Degeneracy 1 2 2 2 2 2 2 1 2

27 of E6 - - 0 0 1·(27) - 0 -
FP Degeneracys - - 2 - 1 - 1 -

Total Amount of 27’s 1·(27)1·(27) 0 0 0 3·(27) 0 0 0

Table 4.4: The effect on the model 62 when switched to the brother model and turned on
three Wilson lines. The matter content can be manipulated by switching to the brother
model, whereas the degeneracy can be reduced by the three Wilson lines in the first and
third torus (scheme 13).

degeneracy of the fixed points. Thus we can have three complete families of E6 coming
from the fifth sector.
Another interesting model is given in table 4.5. This model posses exceptionally many
27’s. We can also observe the rules we obtained when we switch to the other brother
model: While the matter in the second and fourth sector is changed from a 27 to a 27,
the third sector is invariant. This model could be a realistic model, since we have many
possible 27 that can source the three families, but it is not clear which scheme we should
apply.

4.5.2 SO(10) model

Now let us turn to a promising SO(10) model. This model will also be our benchmark
model. Since SO(10) models need only two Wilson lines to break the gauge group down to
the SM gauge group they are easier to handle than E6 models and one has more freedom
in them. One SM family can be accommodated in the 16 of SO(10)( see appendix B).
Once again we get a 16 in the fifth twisted sector by adding different lattice vectors and
obtain the correct fixed point degeneracy by introducing two Wilson lines. Note that the
degeneracy of the fifth sector is not affected by assigning a third Wilson line in the fourth
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Model: 3, Gauge Group: SO(16)| E6×U(1)2

(a) Matter content at the 8 sectors of model 3.

Twisted Sector 1 2 3 4 5 6 7 8
27 of E6 3·(27)1·(27) 1·(27) 1·(27) 1·(27) 0 0 0 0

FP. Degeneracy 1 4 4 4 8 16 8 16

27 of E6 of E6 - - 1·(27) - 0 - 0 -
FP. Degeneracys - - 6 - 4 - 4 -

Total Amount of 27’s 3·(27)1·(27) 4·(27) 10·(27) 4·(27) 0 0 0 0

(b) Matter content at the 8 sectors of the brother model.

Twisted Sector 1 2 3 4 5 6 7 8
27 of E6 3·(27),1·(27) 1·(27) 1·(27) 1·(27) 0 0 0 0

FP Degeneracy 1 4 4 4 8 16 8 16

27 of E6 - - 1·(27) - 0 - 0 -
FP Degeneracys - - 6 - 4 - 4 -

Total Amount of 27’s 3 ·(27)1·(27) 4·(27) 10·(27) 4·(27) 0 0 0 0

Table 4.5: A Model with a big amount of representations and its brother model.

Model 67, Gauge Group: SO(10) ×U(1)3|SO(10)×SU(4)

(a) Matter content at the 8 sectors of model 67

Sector 1 2 3 4 5 6 7 8
16 of SO(10) 2·(16)2·(16) 0 0 0 0 0 0 0

FP. Degeneracy 1 4 4 4 8 16 8 16

16 of SO(10) - - 0 - 1·(16) - 0 -
FP. Degeneracys - - 6 - 4 - 4 -

Total Amount of 16’s 2·(16)2·(16) 0 0 0 4·(16) 0 0 0

(b) Matter content at the 8 sectors of the brother model and 2 Wilson lines.

Sector 1 2 3 4 5 6 7 8
16 of SO(10) 2·(16)2·(16) 0 0 0 1·(16) 0 0 0

FP. Degeneracy 1 4 4 4 2 4 2 4

16 of SO(10) - - 0 - 1·(16) - 0 -
FP. Degeneracys - - 6 - 1 - 1 -

Total Amount of 16’s 2·(16)2·(16) 0 0 0 3(·16) 0 0 0

Table 4.6: The two brother models of model number 67. Adding a different lattice vector
results in getting a 16 in the fifth twisted sector. Introduction of two Wilson lines gives
then the right degeneracy to yield three net 16s in the fifth twisted sector.
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Model 104, Gauge Group: SO(12)×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

Twisted Sector 1 2 3 4 5 6 7 8
5 of SU(5) 1(5,3)1(5)2(5,3) 1(2,5) 1(5) 0 1(5,3) 0 1(5) 0

10 of of SU(5) 1(10)1(10,3) 0 0 0 0 0 0 0
FP. Degeneracy 1 4 4 4 8 16 8 16

5 of SU(5) - - 2(5) - 1(5,3) - 2(5) -
10 of SU(5) - - 0 - 1(10) - 0 -

FP. Degeneracys - - 6 - 4 - 4 -

Total Amount of 5’s 1(5,3)1(5)2(5,3) 4(2,5) 16(5) 0 16(5,3) 0 16(5) 0
Total Amount of 10’s 1(10)1(10,3) 0 0 0 4(10) 0 0 0

Table 4.7: An example spectrum of an SU(5) model. The high amount 5s and 10s is hard
to control with Wilson lines. Additionally it is very likely the matter is charged under the
SU(3) or the SU(2) as well, as shown in sector one, two and five.

torus, such that we have many possibilities to further tune the spectrum, while keeping the
three 16s save. We take this as our benchmark model and in section 4.6 we will assign two
modular invariant Wilson lines which break the gauge groups to the one of the standard
model.

4.5.3 A note on Pati-Salam and SU(5) Models

We also have many SU(5) and SU(4)× SU(2)× SU(2) models in our classification. They
are actually closer to the SM than for example E6, so we should consider them as well.
Looking at these models reveals that all SU(5) groups come with an SU(3) in the same
E8. In all cases there are 5s in the bulk that are charged under the SU(3) as an example
in table 4.7 shows. It turns out that there are always 5s charged under SU(3) so that one
has to break the SU(3) as well3. If we want to break the SU(3) with Wilson lines we lose
freedom to use them to manipulate other parts of the spectrum. Another disadvantage is
that we have to control two types of representations namely the 5s and the 10s of SU(5)
and it is very difficult to fix the right amount for both of them especially when Wilson lines
break the hidden SU(3) which introduces additional matter multiplicities. However this
does not mean that these models are hopeless, they are only harder to handle but it is still
worthy to do a systematic search in them. The same argumentation holds for Pati-Salam
models.
In the end it is the structure of SO(10) and E6 that makes them exceptionally good GUT
candidates. First only one amount of representations has to be controlled and second, the
groups are large enough such that there are (mainly) no additional low rank gauge groups
in the same E8 such that it could happen that matter is charged under these groups as
well. The SU(5) models could be still interesting for a systematical analysis later, but we

3One is not forced to break them with Wilson lines with vevs.
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have such a big selection of models that can be broken down to the SM gauge group, that
E6 and SO(10) models are favoured.

4.6 The benchmark model

As a benchmark model we take model 67 and introduce two Wilson lines in the first torus.
They are given by
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They fulfill all 7 modularity conditions, namely

A1 · A1 = A2 · A2 = A1 · A2 = A1 · V2 = A2 · V2 = A1 · V4 = A2 · V4 = A1 · A2 = 0 mod 1

The Wilson lines break the gauge group to

SO(10)|SO(10)× SU(4)︸ ︷︷ ︸
Hidden

A1→ SU(5)|SU(3)× SU(5)︸ ︷︷ ︸
Hidden

SU(5)|SU(3)× SU(5)︸ ︷︷ ︸
Hidden

A2→ SU(3)× SU(2)|SU(2)× SU(4)︸ ︷︷ ︸
Hidden

.

Note that the U(1) factors were omitted. The spectrum for this model is given in table
4.8. It shows the 8 sectors and their matter representations with respect to the bulk gauge
group. Note that there are 3 complete families in the fifth twisted sector as predicted from
the Wilson line scheme. There appears also a lot of other matter in the twisted sectors but
this originates mostly from complete 10s of SO(10) and can be decoupled. From these 10s
we can take the (1,2) as our Higgses. Also the adjoint matter, e.g. the gauge multiplet, is
not shown.
Note that this model has no non-Abelian anomalies. In principal all residual (3,1) and
(3,1) in the spectrum should decouple but for this one needs the U(1) charges which will
be subject of further study.
In the end the benchmark model could be a very promising candidate to achieve an MSSM
like spectrum. It is very interesting that all SM matter originates from twisted sectors
with an SO(10) GUT group which is not the case in the Z2 × Z2 orbifold in [15].
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# Sector SM Matter SU(3)× SU(2) Hidden MatterSU(2)× SU(4)
1 T(0,0) 4·(3,1) 1·(1,4)

2·(3,1) 1·(1,6)
8·(1,1)

2 T(0,1) 16·(1,1)
3 T(0,2) 16·(1,1)
4 T(0,3) 8·(1,1)
6 T(1,1)
5 T(1,0) 4·(3,1) 4·(2,1)

2·(3,2) 4·(1,4)
8·(1,2)
40·(1,1)
3 · (3,2)
6 · (3,1)
3 · (1,2)
3 · (1,1)

 3 · (16)SO(10)

6 T(1,1)
7 T(1,2) 1·(3,1) 7·(1,4)

1·(3,1) 5·(1,4)
2·(1,2) 4·(2,1)
33·(1,1)

8 T(1,3) 8·(1,1) 4·(2,1)

Table 4.8: The spectrum of the Benchmark model with two Wilson lines. The twisted
sectors are given in the first two columns and matter charged under the SM or hidden
gauge group in the third and fourth. Note the three complete families in the fifth twisted
sector come from 3 16s of local SO(10) GUT points.

54



Chapter 5

Conclusion

In this work we considered the E8×E8 heterotic string compactified on a Z2×Z4 orbifold
and asked whether there are models with realistic properties. Modularity of the 1-loop
partition function forced us to embed the shifts into the gauge degrees of freedom and
thus E8 × E8 gets broken. To find realistic models we wanted first to find all embeddings
that are inequivalent with respect to the automorphisms of E8 × E8. Since E8 has only
inner automorphisms, the whole automorphism group is given by the direct product of the
two E8s, which makes it sufficient to focus on one E8 and care about modular invariance
later. To do so we took the 10 inequivalent Z4 shifts from [12] and constructed all sets of
Z2 shifts that could not be related by Weyl reflections, that leave the corresponding Z4

shift invariant, and that could not be related by a lattice shift. Because the whole Weyl
group of E8 is very big we could not check for higher combinations of Weyl reflections.
By allowing lattice shifts we broke the strict inequivalence because lattice shifts affect the
twisted matter spectrum. In that way we constructed 84 Z2 × Z4 shifts in one E8. To
eliminate higher equivalent embeddings we removed shifts that led to the same spectra as
other ones and gained 75 embeddings in one E8. When we paired the shifts to E8 × E8

vectors in a modular invariant way we got 144 models. We allowed lattice shifts in our
classification but this lead to inequivalent spectra in the twisted sectors. Models that differ
by lattice vectors in such a way are called brother models. The structure of our orbifold
allowed only for two different brother models .
When we computed the gauge group we found 35 SO(10) , 26 E6 and 25 SU(5) models.
In the fourth chapter we introduced the geometry of our factorized SU(2)2×SO(4)2 Lie lat-
tice we chose and analyzed its fixed point structure and properties. The analysis showed
that the geometry possessed special fixed points whose matter enjoyed relaxed projection
conditions, in contrast to normal fixed points, and are also invariant under the brother
phase.
To achieve a realistic model with three net families and the SM gauge group it was in-
evitable to introduce Wilson lines. Depending on the way Wilson lines were switched on,
we developed a strategy how to find promising candidates. In the following we presented
3 interesting candidates and the way how we could manipulate the matter content. One
of them is taken as a benchmark model. We assigned two modular invariant Wilson lines
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that break to the SM gauge group in the bulk and got three net families coming from local
SO(10) GUT points.
All this shows that Z2×Z4 is a very promising orbifold scheme that even has multiple very
promising GUT candidates to achieve an MSSM like model.

Outlook

There are still many questions in the benchmark model, that have to be addressed when
we want to come closer to MSSM like models. One of them is to get a good global model
where we can decouple all unwanted matter. For this we have to check if we can give them
a mass term at the level of the effective SUGRA action so we have to know their U(1)
charges as well. One of the U(1)s we have is anomalous, which will introduce an Fayet-
Iliopoulos [33] term in the effective action and introduce vevs for the fields. Of course we
have to make sure that the Hypercharge is not anomalous.
Also F-and D-term flatness have to be addressed such that we get a SUSY vacuum configu-
ration. This in turn will affect the geometry and blow up the singularities to a smooth CY
manifold what should also be analysed further. A big topic will also be the computation
of Yukawa couplings and the search for a ZR4 -symmetry to forbid unwanted couplings.

56



Appendix A

Facts about E8

The group E8 is the biggest exceptional Lie group. The group is uniquely defined by the
geometrical properties of its positive and simple roots which can be graphically expressed
through the Dynkin diagram. The smallest non trivial representation of E8 is the adjoint

α1 α2 α3 α4 α5 α6 α7

α8

Figure A.1: The Dynkin diagram of E8

representation which coincides with the fundamental. It is given by all roots of norm
squared 2 which are the vectorial roots

(±1,±1, 0, 0, 0, 0, 0, 0) , (A.0.1)

giving 4
(

8
2

)
= 112 combinations and the spinorial roots

(±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
, ) , (A.0.2)

with an even number of minus signs such that there are 2
(

8
0

)
+2
(

8
2

)
+
(

8
4

)
= 128 combinations.

Adding the 8 Cartan elements there are 248 elements in the adjoint representation.

57



58



Appendix B

Group theoretical GUT breaking

This section is a short summary of the group theoretical breaking of E6 and its represen-
tations down to the standard model. We focus on breaking schemes of GUT groups i.e.
E6, SO(10) and SU(5).
The representations can be systematically labelled by the Dynkin labels. These are the
weight vectors µj of the given representation multiplied by the positive simple roots αi of
the group G i.e.

Λi
j = 2

µj · αi
αi · αi

,

with i=1,..,Rank(G), j=1,..,Dim(Representation).
The highest Dynkin label is then the one with only positive integers. To get the dimension-
ality of the representation one has to subtract for a positive entry n in the µth component
of the Dynkin label, n times the µth row of the Cartan-matrix until there are only non-
positive entries left. The amount of different Dynkin labels gives the dimensionality of the
representation.
The Dynkin label also reflects the symmetry of the Dynkin diagram. E.g. complex conju-
gation means reflecting the Dynkin diagram along its symmetry axis. A Dynkin label of
a given representation gets then transformed into the highest root of the conjugate repre-
sentation. In this way it is especially easy to see which representations are self adjoint i.e.
invariant under relabeling of the components and which ones are conjugate to each other
and share the same dimensionality. The reflection of the the roots of the Dynkin diagram is
an outer automorphism of the group, such that complex representations are only possible
for groups that posses that symmetry. E.g. not the case for E8.

B.1 E6

We begin with the discussion of E6. The Dynkin diagram is given in figure B.1. As one
can see from the Dynkin diagram, the lattice has a reflection symmetry and therefore it
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α1 α2 α3 α4 α5

α6

Figure B.1: The Dynkin diagram of E6

can have complex representations. The most important representations of E6 are given by

(0, 0, 0, 0, 0, 1) 78 adjoint ,

(1, 0, 0, 0, 0, 0) 27 fundamental ,

(0, 0, 0, 0, 1, 0) 27 anti-fundamental .

B.2 SO(10)

E6 can be broken down to SO(10) by removing the root1 α5(/α1). The breaking of the
Dynkin diagram is graphically depicted in figure B.2. The splitting of the E6 representa-

α1 α2 α3 α4 α5

α6

α1 α2 α3 α4

α6

Figure B.2: Splitting of the E6 Dynkin diagram into the one of SO(10) by deleting one of
the exterior roots.

tions into SO(10) representations is then.

78→ 45⊕ 16⊕ 16⊕ 1 ,

27→ 16⊕ 10⊕ 1 .

B.3 SU(5)

SO(10) can be further broken down to SU(5) by deleting one of the spinorial roots α4 or
α5 in the Dynkin diagram. This is depicted in figure B.3. According to the splitting the

1For simplicity we do not consider the extended Dynkin diagrams.
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α1 α2 α3 α4

α6

α1 α2 α3 α4

Figure B.3: Splitting of the SO(10) Dynkin diagram into the one of SU(5) by deleting one
of the spinorial roots.

representations branch like

45→ 24⊕ 10⊕ 10⊕ 1

16→ 10⊕ 5⊕ 1

10→ 5⊕ 5

B.4 Standard Model

SU(5) is finally a good candidate to break down to the standard model gauge group SU(3)×
SU(2)× U(1) by projecting out one of the middle roots α2 or α3 shown in figure B.4. The

α1 α2 α3 α4 α1 α2 α4

Figure B.4: Splitting of the SU(5) Dynkin diagram to the SM Dynkin diagram with
SU(3)×SU(2)×U(1).

representations of SU(5) split according to

24→ (8,1)0 ⊕ (1,3)0 ⊕ (3,2)− 5
6
⊕ (3,2) 5

6
,

5→ (3,1)− 1
3
⊕ (1,2) 1

2
,

10→ (3,2)− 1
6
⊕ (3,1)− 2

3
⊕ (1,1)1 ,

where the subscript denotes the U(1) hypercharge. So from the SU(5) point of view we
need one 5 and one 10. SO(10) unifies the matter further since the 5 and the 10 of SU(5)
are both in a 16 as well as a singlet that can be the right handed neutrino. This SM family
as well as a 10 of SO(10) that includes the Higgs, can be accommodated in a 27 of E6
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Appendix C

Change of the orbifold phase under
lattice shifts

We define Psh = P +Vg, where the shift vector Vg = kV2 + lV4 corresponds to constructing
element of a fixed point. The shifts according to an element of the centraliser Vh =
mV2 + nV4 gives then the orbifold phase:

φo = e2πi(Psh·Vh−(qsh−N+N̄)·vh)− 1
2

(Vg ·Vh−vg ·vh) .

When we add lattice vectors α and β to V2 and V4 Psh still solves the mass equation. The
orbifold phase thus shifts to

φ = e2πi[Psh·Ṽh−R·vh− 1
2

(Ṽg ·Ṽh−vg ·vh)] ,

= e2πi[Psh·(Vh+kα+nβ)−R·vh− 1
2

(Vg+kα+lβ)·(Vh+mα+nβ)+ 1
2

(vg ·vh)] ,

=φoe
2πi[Psh·(mα+nβ)− 1

2
(Vg ·(mα+nβ)+(kα+lβ)·Vh+(kα+lβ)·(mα+nβ))] ,

simplifying the expression and using that P · α ∈ Z this yields

φ =φoe
2πi 1

2
[(kV2+lV4)·(mα+nβ)−(kα+lβ)·(mV2+nV4)−knα·β+mlα·β]

=φoe
2πi 1

2
(kn−lm)[V2·β−V4·α+α·β] , (C.0.1)

where we used that α · β ∈ Z and therefore that

eπiα·β = e−πiα·β .

When we take the third modularity condition

2
(
Ṽ2 · Ṽ4 − v2 · v4

)
= M = 0 mod 2 ,

it changes by the additional lattice vectors to

M + 2V2 · β + 2V4 · β + α · β = 2Z ,
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1 2 3 4 5 6 7 8
Sector T(0,0) T(0,1) T(0,2) T(0,3) T(1,0) T(1,1) T(1,2) T(1,3)

Phase normal fp (0, 0) (1
2
, 0) (0, 0) (1

2
, 0) (0, 1

2
) (1

2
, 1

2
) (0, 1

2
) (1

2
, 1

2
)

Phase special fp - - (0, 0) - (0, 0) - (0, 0) -

Table C.1: Brother phase in tuple form for each sector.

such that we can substitute this condition into equation (C.0.1), yielding

φ̃ = φ0e
2πi 1

2
(kn−lm)[2V2β−Z+M

2 ] . (C.0.2)

C.1 Lattice shifts and Z2 × Z4 sectors

Demanding a trivial orbifold phase (without Wilson lines) translates in the conditions1

m

(
P +

1

2
kV2 +

1

2
lV4

)
· V2 =m(qi + kvi2 + lvi4 −N i + N̄ i) · vi2 mod 1 = mx ,

n

(
P +

1

2
kV2 +

1

2
lV4

)
· V4 =n(qi + kvi2 + lvi4 −N i + N̄ i) · vi4 mod 1 = ny .

The left-mover’s phase has to be compensated by the right-mover’s phase modulo 1. Let
us label a right-mover by the two numbers (x,y) that can compensate the phase of a left-
mover and give a representation.
If we add a lattice vector to V2 and V4, we get the additional phase eπi(kn−ml)(2V2β−Z) such
that (x,y) is shifted according to table C.1. This table makes clear that the matter at the
special fixed points and in the untwisted and T(0,2) sector is always protected.
It turns out that each twisted sector has only one right-mover configuration that solves the
mass equation. This means that two brother models will always differ in the matter content
in all these points. If the sector has additional special fixed points, then only matter can
appear which is always included in that sector. In this way one can use the brother phase
to project out matter and let matter from special fixed points also appear/vanish at the
normal ones.

1The vacuum phase was included.
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Appendix D

Tables

Root Number simple roots

1 (−1
2
,+1

2
,+1

2
,+1

2
,+1

2
,+1

2
,+1

2
,−1

2
)

2 (1,−1, 0, 0, 0, 0, 0, 0)
3 (0, 1,−1, 0, 0, 0, 0, 0)
4 (0, 0, 1,−1, 0, 0, 0, 0)
5 (0, 0, 0, 1,−1, 0, 0, 0)
6 (0, 0, 0, 0, 1,−1, 0, 0)
7 (0, 0, 0, 0, 0, 1,−1, 0)
8 (−1

2
,−1

2
,−1

2
,−1

2
,+1

2
,+1

2
,+1

2
,+1

2
)

Table D.1: Our choice of the simple roots of E8.

4VZ4 2VZ2 Group Decomposition

(0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) E8

(−1, 0, 0, 0, 0, 0, 1, 0) E7×SU(2)
(−1,−1,−1, 0, 0, 0, 0, 1) SO(16)

(2,2,0,0,0,0,0,0) (0, 0, 0, 0, 0, 0, 0, 0) E7×SU(2)
(−1, 1, 0, 0, 0, 0, 0, 0) E7×SU(2)
(−1, 0, 0, 0, 0, 0, 1, 0) E6×U(1)2

(−1, 1, 0, 0, 0, 0, 0, 0) SO(12)×SU(2)2

(−1,−1,−1, 0, 0, 0, 0, 1) SO(12)×SU(2)2

(−1, 0,−1,−1, 0, 0, 0, 1) SU(8)×U(1)
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4VZ4 2VZ2 Group Decomposition

(1, 1, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) E7×U(1)
(−1, 1, 0, 0, 0, 0, 0, 0) E7×U(1)
(−1, 0, 0, 0, 0, 0, 1, 0) E6×U(1)2

(−1, 1, 0, 0, 0, 0, 0, 0) SO(12)×SU(2)×U(1)
(−1,−1,−1, 0, 0, 0, 0, 1) SO(12)×SU(2)×U(1)
(−1, 0,−1,−1, 0, 0, 0, 1) SU(8)×U(1)

(2,1,1,0,0,0,0,0) (0, 0, 0, 0, 0, 0, 0, 0) E6×SU(2)×U(1)
(−1, 0, 1, 0, 0, 0, 0, 0) E6×U(1)2

(−1, 0, 0, 0, 0, 0, 1, 0) SO(10)×SU(2)×U(1)2

(−1, 0, 1, 0, 0, 0, 0, 0) SO(10)×U(1)3

(0, 0, 0,−1, 0, 0, 1, 0) SU(6)×SU(2)2×U(1)
(0,−1, 1, 0, 0, 0, 0, 0) E6×SU(2)×U(1)

(−1,−1,−1, 0, 0, 0, 0, 1) SO(10)×SU(2)×U(1)2

(−1,−1, 0,−1, 0, 0, 0, 1) SU(6)×SU(2)×U(1)2

(−1, 0, 0,−1,−1, 0, 0, 1) SU(6)×SU(2)2×U(1)
(4,0,0,0,0,0,0,0) (0, 0, 0, 0, 0, 0, 0, 0) SO(16)

(−1, 0, 0, 0, 0, 0, 1, 0) SO(12)×SU(2)2 A
(−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
) SU(8)×U(1)

(0,−1, 0, 0, 0, 0, 1, 0) SO(12)×SU(2)2 A
(0, 0, 0, 0, 0,−2, 0, 0) SO(16)

(−3
2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
) SU(8)×U(1)

(−1,−1,−1, 0, 0, 0, 0, 1) SO(8)2

(2,0,0,0,0,0,0,0) (0, 0, 0, 0, 0, 0, 0, 0) SO(14)×U(1)
(−1, 0, 0, 0, 0, 0, 1, 0) SO(12)×U(1)2

(−1
2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
) SU(7)×U(1)2

(0,−1, 0, 0, 0, 0, 1, 0) SO(10)×SU(2)2×U(1)
(0, 0, 0, 0, 0,−2, 0, 0) SO(14)×U(1)

(−3
2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
) SU(7)×U(1)2

(−1,−1,−1, 0, 0, 0, 0, 1) SU(4)×SO(8)×U(1)
(3,1,0,0,0,0,0,0) (0, 0, 0, 0, 0, 0, 0, 0) SO(12)×SU(2)×U(1)

(−1, 1, 0, 0, 0, 0, 0, 0) SO(12)×SU(2)×U(1)
(−1, 0, 0, 0, 0, 0, 1, 0) SO(10)×U(1)3 A
(−1, 1, 0, 0, 0, 0, 0, 0) SO(12)×SU(2)×U(1)

(−1
2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
) SU(6)×U(1)3

(−1
2
, 1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
) SU(6)×SU(2)×U(1)2

(0,−1, 0, 0, 0, 0, 1, 0) SO(10)×U(1)3 A
(0, 0,−1, 0, 0, 0, 1, 0) SO(8)×SU(2)3×U(1)
(0, 0, 0, 0, 0,−2, 0, 0) SO(12)×SU(2)×U(1)

(−3
2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
) SU(6)×SU(2)×U(1)2

(−3
2
, 1

2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
) SU(6)×U(1)3

(−1,−1,−1, 0, 0, 0, 0, 1) SO(8)×SU(2)3 ×U(1)
(−1, 0,−1,−1, 0, 0, 0, 1) SU(4)2×U(1)2
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4VZ4 2VZ4 Group Decomposition

(2,2,2,0,0,0,0,0) (0, 0, 0, 0, 0, 0, 0, 0) SO(10)×SU(4)
(−1,−1, 0, 0, 0, 0, 0, 0) SO(10)×SU(2)2×U(1) A
(−1, 0, 0, 0, 0, 0, 1, 0) SO(8)×SU(2)2×U(1)2

(−1, 0, 1, 0, 0, 0, 0, 0) SO(10)×SU(2)2×U(1) A
(−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
) SU(5)×SU(3)×U(1)2 B

(−1
2
,−1

2
, 1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
) SU(5)×SU(3)×U(1)2 B

(0, 0, 0,−1, 0, 0, 1, 0) SU(4)2×SU(2)2

(0, 0, 0, 0, 0,−2, 0, 0) SO(10)×SU(4)
(−3

2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
) SU(5)×SU(3)×U(1)2 C

(−3
2
, 1

2
, 1

2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
) SU(5)×SU(3)×U(1)2 C

(−1,−1,−1, 0, 0, 0, 0, 1) SO(8)×SU(4)×U(1)
(−1,−1, 0,−1, 0, 0, 0, 1) SU(4)×SU(2)4×U(1)

(3,1,1,1,1,1,0,0) (0, 0, 0, 0, 0, 0, 0, 0) SU(8)×SU(2)
(−1,−1, 0, 0, 0, 0, 0, 0) SU(6)×SU(2)2×U(1) A
(−1, 0, 0, 0, 0, 0, 1, 0) SU(6)×SU(2)×U(1)2 B
(−1, 0, 0, 0, 0, 1, 0, 0) SU(4)2×SU(2)×U(1)
(0,−1, 0, 0, 0, 0, 1, 0) SU(6)×SU(2)×U(1)2 B
(0,−1, 0, 0, 0, 1, 0, 0) SU(6)×SU(2)2×U(1) A
(0, 0, 0, 0, 0, 0,−1, 1) SU(8)×SU(2)

(−1, 0, 0, 1,−1, 1, 0, 0) SU(6)×SU(2)2×U(1) C
(−1

2
,−3

2
, 1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2
) SU(8)×U(1)

(−1,−1,−1, 0, 0, 0, 0, 1) SU(4)2×U(1)2

(0,−1,−1, 0, 0, 0,−1, 1) SU(4)2×SU(2)×U(1)
(0, 0, 1,−1,−1,−1, 0, 0) SU(6)×SU(2)2×U(1) C

(1,1,1,1,1,1,1,-1) (0, 0, 0, 0, 0, 0, 0, 0) SU(8)×U(1)
(0, 0, 0, 0,−1,−1, 0, 0) SU(6)×SU(2)×U(1)2

(−1, 0, 0, 0, 0, 0, 1, 0) SU(6)×SU(2)×U(1)2

(−1
2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
) SU(7)×U(1)2

(−1
2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
) SU(5)×SU(3)×U(1)2

(0, 0, 0, 0, 0,−2, 0, 0) SU(8)×U(1)
(−1

2
, 1

2
, 1

2
, 1

2
, 1

2
,−3

2
, 1

2
,−1

2
) SU(7)×U(1)2

(−1
2
,−1

2
,−1

2
,−1

2
, 1

2
,−3

2
, 1

2
, 1

2
) SU(5)×SU(3)×U(1)2

(−1,−1,−1, 0, 0, 0, 0, 1) SU(4)2×U(1)2

Table D.2: Possible shift vectors and their gauge groups in one E8. The same letter in the
last column shows shifts leading to an equivalent spectrum.
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M # V4,f :(0, 0, 0, 0, 0, 0, 0, 0)(1, 1, 0, 0, 0, 0, 0, 0) M Gauge Group
1 (0, 0, 0, 0, 0, 0, 0, 0)(−1, 0, 0, 0, 0, 0, 1, 0) 0 E8|E6×U(1)2

2 (−1, 0, 0, 0, 0, 0, 1, 0)(−1, 0,−1,−1, 0, 0, 0, 1) 0 E7×SU(2)|SU(8)×U(1)
3 (−1,−1,−1, 0, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) 0 SO(16)| E6×U(1)2

V4,f : (0, 0, 0, 0, 0, 0, 0, 0)(3, 1, 0, 0, 0, 0, 0, 0)

4 (0, 0, 0, 0, 0, 0, 0, 0)(−1, 0, 0, 0, 0, 0, 1, 0) − 1
2

E8|SO(10)×U(1)3

5 (0, 0, 0, 0, 0, 0, 0, 0)(− 1
2
, 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2

) 0 E8|SU(6)×SU(2)×U(1)2

6 (−1, 0, 0, 0, 0, 0, 1, 0)(− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

) −1 E7×SU(2)|SU(6)×SU(2)×U(1)2

7 (−1, 0, 0, 0, 0, 0, 1, 0)(−1, 0,−1,−1, 0, 0, 0, 1) − 1
2

E7×SU(2)|SU(4)2×U(1)2

8 (−1,−1,−1, 0, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) − 1
2

SO(16)|SO(10)×U(1)3

9 (−1,−1,−1, 0, 0, 0, 0, 1)(− 1
2
, 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2

) 0 SO(16)|SU(6)×SU(2)×U(1)2

V4,f : (2, 2, 0, 0, 0, 0, 0, 0)(1, 1, 0, 0, 0, 0, 0, 0)
10 (0, 0, 0, 0, 0, 0, 0, 0)(−1, 0, 0, 0, 0, 0, 1, 0) 0 E7×SU(2)|E6×U(1)2

11 (−1,−1, 0, 0, 0, 0, 0, 0)(−1, 0,−1,−1, 0, 0, 0, 1) −1 E7×SU(2)|SU(8)×U(1)
12 (−1, 0, 0, 0, 0, 0, 1, 0)(−1, 0,−1,−1, 0, 0, 0, 1) − 1

2
E6×U(1)2|SU(8)×U(1)

13 (−1, 1, 0, 0, 0, 0, 0, 0)(−1, 0,−1,−1, 0, 0, 0, 1) 0 SO(12)×SU(2)2|SU(8)×U(1)
14 (−1,−1,−1, 0, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) −1 SO(12)×SU(2)2| E6×U(1)2

15 (−1, 0,−1,−1, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) − 1
2

SU(8)×U(1)|E6×U(1)2

V4,f : (2, 2, 0, 0, 0, 0, 0, 0)(3, 1, 0, 0, 0, 0, 0, 0)

16 (0, 0, 0, 0, 0, 0, 0, 0)(−1, 0, 0, 0, 0, 0, 1, 0) − 1
2

E7×SU(2)|SO(10)×U(1)3

17 (0, 0, 0, 0, 0, 0, 0, 0)(− 1
2
, 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2

) 0 E7×SU(2)|SU(6)×SU(2)×U(1)2

18 (−1,−1, 0, 0, 0, 0, 0, 0)(− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

) −2 E7×SU(2)|SU(6)×SU(2)×U(1)2

19 (−1,−1, 0, 0, 0, 0, 0, 0)(−1, 0,−1,−1, 0, 0, 0, 1) − 3
2

E7×SU(2)|SU(4)2×U(1)2

20 (−1, 0, 0, 0, 0, 0, 1, 0)(− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

) − 3
2

E6×U(1)2|SU(6)×SU(2)×U(1)2

21 (−1, 0, 0, 0, 0, 0, 1, 0)(−1, 0,−1,−1, 0, 0, 0, 1) −1 E6×U(1)2|SU(4)2×U(1)2

22 (−1, 1, 0, 0, 0, 0, 0, 0)(− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

) −1 SO(12)×SU(2)2|SU(6)×SU(2)×U(1)2

23 (−1, 1, 0, 0, 0, 0, 0, 0)(−1, 0,−1,−1, 0, 0, 0, 1) − 1
2

SO(12)×SU(2)2|SU(4)2×U(1)2

24 (−1,−1,−1, 0, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) − 3
2

SO(12)×SU(2)2|SO(10)×U(1)3

25 (−1,−1,−1, 0, 0, 0, 0, 1)(− 1
2
, 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2

) −1 SO(12)×SU(2)2|SU(6)×SU(2)×U(1)2

26 (−1, 0,−1,−1, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) −1 SU(8)×U(1)|SO(10)×U(1)3

27 (−1, 0,−1,−1, 0, 0, 0, 1)(− 1
2
, 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2

) − 1
2

SU(8)×U(1)|SU(6)×SU(2)×U(1)2

V4,f : (1, 1, 0, 0, 0, 0, 0, 0)(4, 0, 0, 0, 0, 0, 0, 0)
28 (−1, 0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 0, 0, 0) 0 E6×U(1)2|SO(16)
29 (−1, 0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0,−2, 0, 0) 0 E6×U(1)2|SO(16)
30 (−1, 0, 0, 0, 0, 0, 1, 0)(− 3

2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

) − 3
2

E6×U(1)2|SU(8)×U(1)
31 (−1, 0, 0, 0, 0, 0, 1, 0)(−1,−1,−1, 0, 0, 0, 0, 1) −1 E6×U(1)2|SO(8)×SO(8)
32 (−1, 0,−1,−1, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) −1 SU(8)×U(1)|SO(12)×SU(2)2
33 (−1, 0,−1,−1, 0, 0, 0, 1)(− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

) − 1
2

SU(8)×U(1)|SU(8)×U(1)
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M # V4,f :(1, 1, 0, 0, 0, 0, 0, 0)(1, 1, 1, 1, 1, 1, 1,−1) M Gauge Group

34 (0, 0, 0, 0, 0, 0, 0, 0)(− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

) − 1
2

E7×U(1)|SU(5)

35 (0, 0, 0, 0, 0, 0, 0, 0)(− 1
2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2

) 0 E7×U(1)|SU(5)×SU(3)×U(1)2

36 (−1,−1, 0, 0, 0, 0, 0, 0)(− 1
2
, 1
2
, 1
2
, 1
2
, 1
2
,− 3

2
, 1
2
,− 1

2
) 0 E7×U(1)|SU(7)×U(1)2

37 (−1,−1, 0, 0, 0, 0, 0, 0)(− 1
2
,− 1

2
,− 1

2
,− 1

2
, 1
2
,− 3

2
, 1
2
, 1
2

) −1 E7×U(1)|SU(5)×SU(3)×U(1)2

38 (−1, 0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 0, 0, 0) 0 E6×U(1)2|SU(8)×U(1)
39 (−1, 0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0,−2, 0, 0) − 1

2
E6×U(1)2|SU(8)×U(1)

40 (−1, 0, 0, 0, 0, 0, 1, 0)(−1,−1,−1, 0, 0, 0, 0, 1) −1 E6×U(1)|SU(4)2×U(1)2

41 (−1, 1, 0, 0, 0, 0, 0, 0)(− 1
2
, 1
2
, 1
2
, 1
2
, 1
2
,− 3

2
, 1
2
,− 1

2
) 1

2
SO(12)×SU(2)×U(1)|SU(7)×U(1)2

42 (−1, 1, 0, 0, 0, 0, 0, 0)(− 1
2
,− 1

2
,− 1

2
,− 1

2
, 1
2
,− 3

2
, 1
2
, 1
2

) − 1
2

SO(12)×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

43 (−1,−1,−1, 0, 0, 0, 0, 1)(− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

) −1 SO(12)×SU(2)×U(1)|SU(7)×U(1)2

44 (−1,−1,−1, 0, 0, 0, 0, 1)(− 1
2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2

) − 1
2

SO(12)×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

45 (−1, 0,−1,−1, 0, 0, 0, 1)(0, 0, 0, 0,−1,−1, 0, 0) − 1
2

SU(8)×U(1)|SU(6)×SU(2)×U(1)2

46 (−1, 0,−1,−1, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) 0 SU(8)×U(1)|SU(6)×SU(2)×U(1)2

V4,f : (2, 1, 1, 0, 0, 0, 0, 0)(2, 0, 0, 0, 0, 0, 0, 0)

47 (0, 0, 0, 0, 0, 0, 0, 0)(− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

) 0 E6×SU(2)×U(1)|SU(7)×U(1)2

48 (−1,−1, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0) − 1
2

E6×U(1)2|SO(14)×U(1)

49 (−1,−1, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0,−2, 0, 0) − 1
2

E6×U(1)2|SO(14)×U(1)
50 (−1,−1, 0, 0, 0, 0, 0, 0)(−1,−1,−1, 0, 0, 0, 0, 1) −1 E6×U(1)2|SO(8)×SU(4)×U(1)
51 (−1, 0, 0, 0, 0, 0, 1, 0)(− 3

2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

) −1 SO(10)×SU(2)×U(1)2|SU(7)×U(1)2

52 (−1, 0, 1, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0) 0 SO(10)×U(1)3|SO(14)×U(1)
53 (−1, 0, 1, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0,−2, 0, 0) 0 SO(10)×U(1)3|SO(14)×U(1)
54 (−1, 0, 1, 0, 0, 0, 0, 0)(−1,−1,−1, 0, 0, 0, 0, 1) − 1

2
SO(10)×U(1)3|SO(8)×SU(4)×U(1)

55 (0, 0, 0,−1, 0, 0, 1, 0)(− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

) − 1
2

SU(6)×SU(2)2×U(1)|SU(7)×U(1)2

56 (0,−1, 1, 0, 0, 0, 0, 0)(− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

) − 1
2

E6×SU(2)×U(1)|SU(7)×U(1)2

57 (−1,−1,−1, 0, 0, 0, 0, 1)(− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

) −1 SO(10)×SU(2)×U(1)2|SU(7)×U(1)2

58 (−1,−1, 0,−1, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) −1 SU(6)×SU(2)×U(1)2|SO(12)×U(1)2

59 (−1,−1, 0,−1, 0, 0, 0, 1)(0,−1, 0, 0, 0, 0, 1, 0) − 1
2

SU(6)×SU(2)2×U(1)|SO(10)×SU(2)2×U(1)

60 (−1, 0, 0,−1,−1, 0, 0, 1)(− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

) − 1
2

SU(6)×SU(2)2×U(1)|SU(7)×U(1)2

V4,f : (2, 1, 1, 0, 0, 0, 0, 0)(2, 2, 2, 0, 0, 0, 0, 0)

61 (0, 0, 0, 0, 0, 0, 0, 0)(− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

) − 1
2

E6×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

62 (−1,−1, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0) − 1
2

E6×U(1)2|SO(10)×SU(4)

63 (−1,−1, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0,−2, 0, 0) − 1
2

E6×U(1)2|SO(10)×SU(4)
64 (−1,−1, 0, 0, 0, 0, 0, 0)(−1,−1,−1, 0, 0, 0, 0, 1) −2 E6×U(1)2|SO(8)×SU(4)×U(1)
65 (−1,−1, 0, 0, 0, 0, 0, 0)(−1,−1, 0,−1, 0, 0, 0, 1) − 3

2
E6×U(1)2|SU(4)×SU(2)4×U(1)

66 (−1, 0, 0, 0, 0, 0, 1, 0)(− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

) − 3
2

SO(10)×SU(2)×U(1)2|SU(5)×SU(3)×U(1)2

67 (−1, 0, 1, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0) 0 SO(10)×U(1)3|SO(10)×SU(4)
68 (−1, 0, 1, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0,−2, 0, 0) 0 SO(10)×U(1)3|SO(10)×SU(4)
69 (−1, 0, 1, 0, 0, 0, 0, 0)(−1,−1,−1, 0, 0, 0, 0, 1) − 3

2
SO(10)×U(1)3|SO(8)×SU(4)×U(1)

70 (−1, 0, 1, 0, 0, 0, 0, 0)(−1,−1, 0,−1, 0, 0, 0, 1) −1 SO(10)×U(1)3|SU(4)×SU(2)4×U(1)
71 (0, 0, 0,−1, 0, 0, 1, 0)(− 3

2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

) −1 SU(6)×SU(2)2×U(1)|SU(5)×SU(3)×U(1)2

72 (0,−1, 1, 0, 0, 0, 0, 0)(− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

) −1 E6×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

73 (−1,−1,−1, 0, 0, 0, 0, 1)(− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

) − 3
2

SO(10)×SU(2)×U(1)2|SU(5)×SU(3)×U(1)2

74 (−1,−1, 0,−1, 0, 0, 0, 1)(−1,−1, 0, 0, 0, 0, 0, 0) − 3
2

SU(6)×SU(2)×U(1)2|SO(10)×SU(2)2×U(1)
75 (−1,−1, 0,−1, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) −1 SU(6)×SU(2)×U(1)2|SO(8)×SU(2)2×U(1)2

76 (−1,−1, 0,−1, 0, 0, 0, 1)(0, 0, 0,−1, 0, 0, 1, 0) − 1
2

SU(6)×SU(2)×U(1)2|SU(4)2×SU(2)2

77 (−1, 0, 0,−1,−1, 0, 0, 1)(− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

) −1 SU(6)×SU(2)2×U(1)|SU(5)×SU(3)×U(1)2
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M # V4,f :(4, 0, 0, 0, 0, 0, 0, 0)(3, 1, 0, 0, 0, 0, 0, 0) M Gauge Group

78 (0, 0, 0, 0, 0, 0, 0, 0)(−1, 0, 0, 0, 0, 0, 1, 0) − 1
2

SO(16)|SO(10)×U(1)3

79 (0, 0, 0, 0, 0, 0, 0, 0)(− 1
2
, 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2

) 0 SO(16)|SU(6)×SU(2)×U(1)2

80 (−1, 0, 0, 0, 0, 0, 1, 0)(− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

) −2 SO(12)×SU(2)2|SU(6)×SU(2)×U(1)2

81 (−1, 0, 0, 0, 0, 0, 1, 0)(−1, 0,−1,−1, 0, 0, 0, 1) − 3
2

SO(12)×SU(2)2|SU(4)2×U(1)2

82 (− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

)(− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

) − 3
2

SU(8)×U(1)|SU(6)×SU(2)×U(1)2

83 (− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

)(−1, 0,−1,−1, 0, 0, 0, 1) −1 SU(8)×U(1)|SU(4)2×U(1)2

84 (0, 0, 0, 0, 0,−2, 0, 0)(−1, 0, 0, 0, 0, 0, 1, 0) − 1
2

SO(14)×U(1)|SO(10)×U(1)3

85 (0, 0, 0, 0, 0,−2, 0, 0)(− 1
2
, 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2

) 0 SO(14)×U(1)|SU(6)×SU(2)×U(1)2

86 (− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)(−1, 0, 0, 0, 0, 0, 1, 0) −2 SU(7)×U(1)2|SO(10)×U(1)3

87 (− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)(− 1
2
, 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2

) − 3
2

SU(7)×U(1)2|SU(6)×SU(2)×U(1)2

88 (−1,−1,−1, 0, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) − 3
2

SO(8)×SU(4)×U(1)|SO(10)×U(1)3

89 (−1,−1,−1, 0, 0, 0, 0, 1)(− 1
2
, 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2

) −1 SO(8)×SU(4)×U(1)|SU(6)×SU(2)×U(1)2

V4,f : (2, 0, 0, 0, 0, 0, 0, 0)(3, 1, 1, 1, 1, 1, 0, 0)

90 (0, 0, 0, 0, 0, 0, 0, 0)(−1, 0, 0, 0, 0, 0, 1, 0) − 1
2

SO(14)×U(1)|SU(6)×SU(2)×U(1)2

91 (−1, 0, 0, 0, 0, 0, 1, 0)(− 1
2
,− 3

2
, 1
2
, 1
2
, 1
2
, 1
2
,− 1

2
, 1
2

) − 1
2

SO(12)×U(1)2|SU(8)×U(1)

92 (−1, 0, 0, 0, 0, 0, 1, 0)(−1,−1,−1, 0, 0, 0, 0, 1) − 3
2

SO(12)×U(1)2|SU(4)2×U(1)2

93 (− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

)(0, 0, 0, 0, 0, 0, 0, 0) 0 SU(7)×U(1)2|SU(8)×SU(2)

94 (− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

)(−1, 0, 0, 1,−1, 1, 0, 0) − 1
2

SU(7)×U(1)2|SU(6)×SU(2)2×U(1)

95 (− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

)(0,−1,−1, 0, 0, 0,−1, 1) − 1
2

SU(7)×U(1)2|SU(4)2×SU(2)×U(1)

96 (0,−1, 0, 0, 0, 0, 1, 0)(− 1
2
,− 3

2
, 1
2
, 1
2
, 1
2
, 1
2
,− 1

2
, 1
2

) 0 SO(10)×SU(2)2×U(1)|SU(8)×U(1)
97 (0,−1, 0, 0, 0, 0, 1, 0)(−1,−1,−1, 0, 0, 0, 0, 1) −1 SO(10)×SU(2)2×U(1)|SU(4)2×U(1)2

98 (0, 0, 0, 0, 0,−2, 0, 0)(−1, 0, 0, 0, 0, 0, 1, 0) − 1
2

SO(14)×U(1)|SU(6)×SU(2)×U(1)2

99 (− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)(−1,−1, 0, 0, 0, 0, 0, 0) − 3
2

SU(7)×U(1)2|SU(6)×SU(2)2×U(1)

100 (− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)(0,−1, 0, 0, 0, 1, 0, 0) − 1
2

SU(7)×U(1)2|SU(6)×SU(2)×U(1)2

101 (− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)(0, 0, 0, 0, 0, 0,−1, 1) − 1
2

SU(7)×U(1)2|SU(8)×SU(2)
102 (−1,−1,−1, 0, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) −1 SO(8)×SU(4)×U(1)|SU(6)×SU(2)×U(1)2

M # V4,f :(3, 1, 0, 0, 0, 0, 0, 0)(1, 1, 1, 1, 1, 1, 1,−1) M Gauge Group

103 (0, 0, 0, 0, 0, 0, 0, 0)(− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

) − 1
2

SO(12)×SU(2)×U(1)|SU(7)×U(1)2

104 (0, 0, 0, 0, 0, 0, 0, 0)(− 1
2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2

) 0 SO(12)×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

105 (−1,−1, 0, 0, 0, 0, 0, 0)(− 1
2
, 1
2
, 1
2
, 1
2
, 1
2
,− 3

2
, 1
2
,− 1

2
) − 1

2
SO(12)×SU(2)×U(1)|SU(7)×U(1)2

106 (−1,−1, 0, 0, 0, 0, 0, 0)(− 1
2
,− 1

2
,− 1

2
,− 1

2
, 1
2
,− 3

2
, 1
2
, 1
2

) − 3
2

SO(12)×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

107 (−1, 0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 0, 0, 0) − 1
2

SO(10)×U(1)3|SU(8)×U(1)
108 (−1, 0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0,−2, 0, 0) −1 SO(10)×U(1)3|SU(8)×U(1)
109 (−1, 0, 0, 0, 0, 0, 1, 0)(−1,−1,−1, 0, 0, 0, 0, 1) − 3

2
SO(10)×U(1)3|SU(4)2×U(1)2

110 (−1, 1, 0, 0, 0, 0, 0, 0)(− 1
2
, 1
2
, 1
2
, 1
2
, 1
2
,− 3

2
, 1
2
,− 1

2
) 0 SO(12)×SU(2)×U(1)|SU(7)×U(1)2

111 (−1, 1, 0, 0, 0, 0, 0, 0)(− 1
2
,− 1

2
,− 1

2
,− 1

2
, 1
2
,− 3

2
, 1
2
, 1
2

) −1 SO(12)×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

112 (− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

)(− 1
2
, 1
2
, 1
2
, 1
2
, 1
2
,− 3

2
, 1
2
,− 1

2
) 0 SU(6)×U(1)3|SU(7)×U(1)2

113 (− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

)(− 1
2
,− 1

2
,− 1

2
,− 1

2
, 1
2
,− 3

2
, 1
2
, 1
2

) −1 SU(6)×U(1)3|SU(5)×SU(3)×U(1)2

114 (− 1
2
, 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2

)(0, 0, 0, 0, 0, 0, 0, 0) 0 SU(6)×SU(2)×U(1)2|SU(8)×U(1)

115 (− 1
2
, 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2

)(0, 0, 0, 0, 0,−2, 0, 0) − 1
2

SU(6)×SU(2)×U(1)2|SU(8)×U(1)

116 (− 1
2
, 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2

)(−1,−1,−1, 0, 0, 0, 0, 1) −1 SU(6)×SU(2)×U(1)2|SU(4)2×U(1)2

117 (0, 0,−1, 0, 0, 0, 1, 0)(− 1
2
, 1
2
, 1
2
, 1
2
, 1
2
,− 3

2
, 1
2
,− 1

2
) 1

2
SO(8)×SU(2)3×U(1)|SU(7)×U(1)2

118 (0, 0,−1, 0, 0, 0, 1, 0)(− 1
2
,− 1

2
,− 1

2
,− 1

2
, 1
2
,− 3

2
, 1
2
, 1
2

) − 1
2

SO(8)×SU(2)3×U(1)|SU(5)×SU(3)×U(1)2

119 (0, 0, 0, 0, 0,−2, 0, 0)(− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

) − 1
2

SO(12)×SU(2)×U(1)|SU(7)×U(1)2

120 (0, 0, 0, 0, 0,−2, 0, 0)(− 1
2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2

) 0 SO(12)×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

121 (− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)(0, 0, 0, 0,−1,−1, 0, 0) − 3
2

SU(6)×SU(2)×U(1)2|SU(6)×SU(2)×U(1)2

122 (− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)(−1, 0, 0, 0, 0, 0, 1, 0) −1 SU(6)×SU(2)×U(1)2|SU(6)×SU(2)×U(1)2

123 (− 3
2
, 1
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2

)(− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

) − 3
2

SU(6)×U(1)3|SU(7)×U(1)2

124 (− 3
2
, 1
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2

)(− 1
2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2

) −1 SU(6)×U(1)3|SU(5)×SU(3)×U(1)2

125 (−1,−1,−1, 0, 0, 0, 0, 1)(− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

) − 3
2

SO(8)×SU(2)3×U(1)|SU(7)×U(1)2

126 (−1,−1,−1, 0, 0, 0, 0, 1)(− 1
2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2

) −1 SO(8)×SU(2)3×U(1)|SU(5)×SU(3)×U(1)2

127 (−1, 0,−1,−1, 0, 0, 0, 1)(0, 0, 0, 0,−1,−1, 0, 0) −1 SU(4)2×U(1)2|SU(6)×SU(2)×U(1)2

128 (−1, 0,−1,−1, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) − 1
2

SU(4)2×U(1)2|SU(6)×SU(2)×U(1)2
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M # V4,f : (2, 2, 2, 0, 0, 0, 0, 0)(3, 1, 1, 1, 1, 1, 0, 0) M Gauge Group

129 (0, 0, 0, 0, 0, 0, 0, 0)(−1, 0, 0, 0, 0, 0, 1, 0) − 1
2

SO(10)×SU(4)|SU(6)×SU(2)×U(1)2

130 (−1,−1, 0, 0, 0, 0, 0, 0)(− 1
2
,− 3

2
, 1
2
, 1
2
, 1
2
, 1
2
,− 1

2
, 1
2

) −1 SO(10)×SU(2)2×U(1)|SU(8)×U(1)
131 (−1,−1, 0, 0, 0, 0, 0, 0)(−1,−1,−1, 0, 0, 0, 0, 1) −2 SO(10)×SU(2)2×U(1)|SU(4)2×U(1)2

132 (−1, 0, 0, 0, 0, 0, 1, 0)(− 1
2
,− 3

2
, 1
2
, 1
2
, 1
2
, 1
2
,− 1

2
, 1
2

) − 1
2

SO(8)×SU(2)2×U(1)2|SU(8)×U(1)

133 (−1, 0, 0, 0, 0, 0, 1, 0)(−1,−1,−1, 0, 0, 0, 0, 1) − 3
2

SO(8)×SU(2)2×U(1)2|SU(4)2×U(1)2

134 (− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

)(0, 0, 0, 0, 0, 0, 0, 0) − 1
2

SU(5)×SU(3)×U(1)2|SU(8)×SU(2)

135 (− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

)(−1, 0, 0, 1,−1, 1, 0, 0) −1 SU(5)×SU(3)×U(1)2|SU(8)×SU(2)

136 (− 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1
2
, 1
2

)(0,−1,−1, 0, 0, 0,−1, 1) −1 SU(5)×SU(3)×U(1)2|SU(4)2×SU(2)×U(1)

137 (0, 0, 0,−1, 0, 0, 1, 0)(− 1
2
,− 3

2
, 1
2
, 1
2
, 1
2
, 1
2
,− 1

2
, 1
2

) 0 SU(4)2×SU(2)2|SU(8)×U(1)
138 (0, 0, 0,−1, 0, 0, 1, 0)(−1,−1,−1, 0, 0, 0, 0, 1) −1 SU(4)2×SU(2)2|SU(4)2×U(1)2

139 (0, 0, 0, 0, 0,−2, 0, 0)(−1, 0, 0, 0, 0, 0, 1, 0) − 1
2

SO(10)×SU(4)|SU(6)×SU(2)×U(1)2

140 (− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)(−1,−1, 0, 0, 0, 0, 0, 0) −2 SU(5)×SU(3)×U(1)2|SU(6)×SU(2)2×U(1)

141 (− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)(−1, 0, 0, 0, 0, 1, 0, 0) − 3
2

SU(5)×SU(3)×U(1)2|SU(4)2×SU(2)×U(1)

142 (− 3
2
,− 1

2
,− 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)(0, 0, 0, 0, 0, 0,−1, 1) −1 SU(5)×SU(3)×U(1)2|SU(8)×SU(2)
143 (−1,−1,−1, 0, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) −2 SO(8)×SU(4)×U(1)|SU(6)×SU(2)×U(1)2

144 (−1,−1, 0,−1, 0, 0, 0, 1)(−1, 0, 0, 0, 0, 0, 1, 0) − 3
2

SU(4)×SU(2)4×U(1)|SU(6)×SU(2)×U(1)2

Table D.3: The 144 models that have the chance of being modular invariant by adding a
lattice vector such that the mismatch M = 2(V2 · V4 − v2 · v4) is exactly 0 mod 2. M is
shown in the third column. The first column gives the model number while the second
gives the compatible V2 shift vector to V4,f which is always given in the first line of each
subtable. Note that the shifts are multiplied by their order!
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