
UNIVERSIT
. .
AT BONN

Physikalisches Institut

Phenomenological Aspects

of Local F-Theory Models

von
Claudia Christine Stephan

Postadresse:
Nussallee 12
53115 Bonn
Deutschland

BONN-IB-2011-05
Universität Bonn
Mai 2011





Phenomenological Aspects

of Local F-Theory Models

von

Claudia Christine Stephan

Diplomarbeit in Physik

angefertigt im

Physikalischen Institut

vorgelegt der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Mai 2011





Eidesstattliche Erklärung
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1. Introduction

The world, as we observe it, is made up of particles belonging to the Standard Model
(SM) of particle physics, which is a quantum field theory based on the gauge symmetry
SU(3)C × SU(2)L × U(1)Y governing the strong, weak and electromagnetic forces.
Also, there is Einstein’s theory of general relativity, which is a classical theory. The
history of theoretical physics shows that it has always been an important goal to find
a unified description for phenomena that at first sight don’t seem to have much in
common. Electromagnetism, at the heart of which lie Maxwell’s equations, as well as
the electroweak unification within the SM at a scale of about 100 GeV are examples
for unified frameworks, and there is evidence that the three gauge couplings of the SM
also meet at a certain energy scale.

This leads to the idea of grand unified theories (GUTs), which aim at embedding the
SM gauge group into a larger group with a single gauge coupling, such as SU(5) [1],
SO(10) or E6. A precise gauge coupling unification at a scale of 1016 GeV can only be
achieved within the Minimal Supersymmetric Standard Model (MSSM), that is, when
supersymmetry (SUSY) is taken into account [2]. This symmetry relates bosons and
fermions and, apart from achieving a gauge coupling unification within the MSSM, has
the important property of solving the naturalness problem of explaining the small Higgs
mass by removing quadratically divergent contributions from the scalar mass terms.
SUSY was invented in the ’70s, and although there has not been a single experimental
proof for its actual existence, theoretical arguments are so strong that it has become a
vital ingredient in today’s search for a fundamental theory of nature and is hoped to
be discovered at the Large Hadron Collider in Geneva within the next few years.

Following the path physicists have successfully been taking for the past centuries, the
next step is to arrive at a theory that brings together the forces of the SM and gravity.
The most promising candidate is string theory, the fundamental objects of which are
not point-like particles but strings. Depending on the way that the strings vibrate and
move through space, they are identified with particles of specific quantum numbers,
and even the graviton, a spin-two particle mediating gravity, has a natural appearance
in form of a string excitation. Working with strings as the smallest ingredients has
the advantage that there exists a minimal length scale, the string scale. Therefore, the
theory is free of ultraviolet divergences and can serve as a fundamental description of
gravity.

A string theory that contains fermions has a supersymmetric spectrum and is therefore
called superstring theory. Since this theory is ten-dimensional, it must be compactified
on an internal six-dimensional space, which can be done in many ways, leading to a very
large number of vacua. It is assumed that some of them can give rise to the MSSM as a
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low-energy effective theory but so far not a single vacuum has been found that satisfies
all requirements. A reasonable approach for model building towards the MSSM is to
impose suitable restrictions to narrow the search. String phenomenology has the task
to construct certain vacua and deduce their consequences for particle physics.

There are five superstring theories, which are related by dualities and conjectured to
be limits of a single theory, called M-theory. For the incorporation of GUTs in the
framework of string theory the availability of exceptional symmetries is essential, and
these are naturally present in the heterotic E8 × E8 string theory [3] compactified
on smooth Calabi–Yau (CY) manifolds with vector bundles or on orbifolds. In both
cases all aspects of four-dimensional physics are sensitive to the global structure, which
means that one must specify a global model. In particular when dealing with CY
manifolds, this can be difficult. Another attractive corner for string phenomenology
in the perturbative region of the string landscape is based on Type IIB orientifolds
with intersecting D-branes, which lead to classical groups. Their advantage is that
the particle physics degrees of freedom are confined to branes and their intersections,
whereas gravity lives in the bulk and is therefore of different geometrical origin. This
allows for so-called local model building, where only small parts of the compact space
are considered and many questions concerning particle physics can be answered easily,
regardless of the details of the full compactification. This bottom-up approach has the
benefit that, as long as one works on a local patch, global consistency requirements
need not to be taken into account. The obvious shortcoming of local models is that
the actual existence of a global model is never guaranteed. Also, certain questions, e.g.
moduli stabilization, cannot be answered.

Besides D-branes and O-planes there are more general branes which give rise to ex-
ceptional groups. These play an essential role in F-theory, which, unlike M-theory, is
not a fundamental theory, but should be thought of as a genuinely non-perturbative
description of a class of string vacua accessible from different sides via string duali-
ties [4]. It can be thought of as the correct way to describe Type IIB theory with
seven-branes in generic situations where the string coupling cannot be assumed to be
small. Two additional auxiliary dimensions are introduced to encode the backreaction
of the seven-branes on the ambient, which causes the string coupling to vary along
the compact coordinates. Thus, F-theory is formulated in twelve dimensions, the two
additional dimensions of which make up a torus which is the fiber of a four-complex-
dimensional CY manifold Y . Seven-branes are indicated by the degeneration locus of
the elliptic fibration.

So far, F-theory model building has relied on a bottom-up approach similar to Type
IIB orientifolds, but it has the great advantage that exceptional gauge groups are
available [5, 6]. The general idea of local F-theory GUT models is to decouple the
bulk of Y and focus instead on a seven-brane wrapping the submanifold S which
carries the gauge group GGUT. The intersections with other branes form curves Σ of
complex codimension one, along which matter localized. These are visible as symmetry
enhancements of GGUT to GΣ ⊃ GGUT. Furthermore, these matter curves can intersect
in points, where the gauge group enhances even further to GP, leading to localized
Yukawa couplings. For an SU(5) GUT, the up- and down-type Yukawa couplings
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1 INTRODUCTION

require enhancements to E6 and SO(12), respectively. The natural presence of the
crucial up-type Yukawa coupling is the prime motivation to pursue F-theory as the
framework for GUT models.

As usually when dealing with GUTs, a major challenge is to achieve proton longevity.
Many processes that lead to proton decay can be evaded by imposing a symmetry,
called matter parity. Requiring the existence of this symmetry and furthermore the
total absence of proton decay at the local point is a central aspect of this work.

The thesis is structured as follows: Chapter 2 summarizes aspects of the SM, SUSY,
the MSSM and GUTs that are needed for the remainder of the work. In chapter 3 I
will give the proper definition of F-theory and introduce its mathematical description
as well as the setup for the local model building. For a detailed review of F-theory,
see for example [7–9]. Chapters 4 and 5 form the main part of this thesis. They are
based on [10] and contain an analysis of local F-theory SU(5) GUTs at a point of
E8 symmetry enhancement. The approach differs from previous works that use the
same setup, e.g. [11], in that the first priority is to guarantee the absence of proton
decay. It turns out that there are exactly two possible definitions of matter parity
PM within the local framework. For each case I will show the possible assignment
of matter and Higgs fields to the curves that is consistent with matter parity, proton
stability and masses for all SM families. In order to obtain a heavy top quark, its
mass is required to be generated at the trilinear level, whereas the other masses, if
absent at the trilinear level, are induced at higher order via a mechanism similar to the
Froggatt-Nielsen mechanism [12]. For each case essentially only one model remains.
Chapter 5 describes the attempt to embed these models in a semilocal scheme using
the spectral cover approach [13, 14] as the so far only available tool for the discussion.
This framework allows for a description of the eight-dimensional GUT surface and thus
constitutes the first step towards a global completion. This effort fails because some
assumptions about fluxes that determine the chirality of matter fields and split the
Higgs multiplets are not consistent with the semilocal constraints. The remaining part
of the thesis deals with a new concept developed in 2010 which goes under the name
T-branes [15]. In chapter 6 I will explain the idea, introduce the calculus and motivate
why T-branes might have the potential to validate or improve the local models that
were found. Since this scheme is still very poorly developed, I started to search for
rules how to make use of it for practical intentions. The results are shown at the end of
chapter 6. Chapter 7 contains a summary and conclusion as well as a detailed outlook
offering suggestions how to proceed with my work on T-branes.
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2. Preliminaries

2.1. The Standard Model of particle physics

The SM of particle physics describes strong and electroweak interactions based on the
gauge group SU(3)C×SU(2)L×U(1)Y . The twelve spin-one gauge bosons are made up
of the eight gluons of SU(3)C , the threeW bosons of SU(2)L and the hypercharge boson
B of U(1)Y . The photon and the Z0 boson are linear combinations of the electrically
neutral W 3 boson and the hypercharge boson B. The non-Abelian and Abelian field
strength tensors are

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2ǫ

abcW b
µW

c
ν ,

Gm
µν = ∂µG

m
ν − ∂νG

m
µ + g3f

mnpGn
µG

p
ν ,

Bµν = ∂µBν − ∂νBµ ,

(2.1)

where fabc denote the structure constants of SU(3).

The fermionic content is given by the following list of three families of left-handed Weyl
spinors (i = 1, 2, 3 is the family index):

Qi =

(
u
d

)
,

(
c
s

)
,

(
t
b

)
,

ūi = ū , c̄ , t̄ ,

d̄i = d̄ , s̄ , b̄ ,

Li =

(
νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

)
,

ēi = ē , µ̄ , τ̄ .

(2.2)

They transform under the SM gauge group as displayed in table 2.1. Their electric
charge is given in terms of the third component of the weak isospin T3 and the hyper-
charge Y by Q = T3 + Y .

The part of the SM Lagrangean containing the kinetic terms for the fermions and the
gauge bosons as well as the interactions between them is

L = iQ†iσ̄µDµQi + iū†i σ̄
µDµū

i + id̄†i σ̄
µDµd̄

i + iL†iσ̄µDµLi + iē†i σ̄
µDµē

− 1

4
W a

µνW
µνa − 1

4
Ga

µνG
µνa − 1

4
BµνB

µν ,
(2.3)

where Dµ denotes the appropriate covariant derivative. The σ̄µ are related to the Pauli
matrices σi through:

σµ = (1, σi) , σ̄µ = (1,−σi) . (2.4)
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2.2 SUPERSYMMETRY

Since all fermions of the SM are chiral, the gauge symmetries forbid mass terms such
that they can only occur after the SU(2)L ×U(1)Y symmetry has been spontaneously
broken to U(1)EM by the Higgs mechanism. The Higgs sector is made up of a scalar

SU(2) doublet h =

(
h+

h0

)
with hypercharge Y = +1

2
and potential

V = µ2h†h+ λ(h†h)2 . (2.5)

If µ2 is negative, h develops a vacuum expectation value (VEV), which can be rotated
to

〈h〉 = 1√
2

(
0
v

)
, v =

(−µ2

λ

) 1
2

. (2.6)

The kinetic term for the Higgs scalars,

(Dµh)(D
µh†) , (2.7)

leads to masses for theW± and Z0 bosons but leaves the photon massless. Furthermore,
the Yukawa couplings of the quarks and leptons to the Higgs,

yuQhū + ydQh̃
†d̄+ yeLh̃

†ē , (2.8)

where h̃ = iσ2h∗, give rise to the fermion masses. The terms (2.3), (2.5), (2.7) and
(2.8) form the SM Lagrangean.

2.2. Supersymmetry

SUSY is a symmetry between fermions and bosons and it turns out that one new par-
ticle needs to be introduced for each known particle. The single-particle states of a
supersymmetric theory are contained in irreducible representations of the SUSY alge-
bra, known as supermultiplets, each of which is inhabited by a fermion and a boson.
They are called superpartners of each other. One of the most important properties of
SUSY is that it removes the quadratic divergences from the mass term of scalar par-
ticles, as the quantum corrections involving SM particles are precisely canceled by the
contributions of the corresponding superpartners. This protects the Higgs mass from
ultraviolet physics. For an introduction, see e.g. [16]. In N = 1 (one supersymmetry
generator) SUSY there are two relevant irreducible supermultiplets: The chiral multi-
plet, containing a Weyl fermion and a complex scalar field, and the vector multiplet,
which combines a spin-one vector boson with a Majorana fermion.

Promoting SUSY to a local symmetry leads to supergravity (SUGRA). It is known that
the invariance under a local gauge transformation parameterized by a scalar requires
the introduction of gauge bosons. Since the transformation parameter of SUSY is a
spinorial quantity, the same argument leads to the necessity of a gauge fermion. The
place of the gauge boson is taken by the spin-3/2 gravitino, whose partner is a spin-two
particle with the properties of the graviton, explaining the name supergravity. The full
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2 PRELIMINARIES

information of a SUGRA theory is contained in three quantities: The superpotential,
which is a holomorphic function of the chiral superfields and has the important property
that it is not renormalized, the gauge kinetic function, holomorphic as well, and the
Kähler potential, a real function that can be written as K = Φ†iΦi to lowest order,
where a sum over all chiral superfields is implied. Particles assigned to the same
supermultiplet have the same quantum numbers under the gauge symmetry and, as
long as supersymmetry is unbroken, also have the same mass. Since the superpartners
of the SM elementary particles have not yet been discovered, SUSY must be broken.

The particles residing in chiral multiplets are all the SM fermions as well as the spin-
zero Higgs. Although the left-handed lepton doublet has the same quantum numbers
as the Higgs doublet, combining them into a single supermultiplet turns out to have
disastrous consequences: It leads to proton decay. Therefore, one new particle has to
be introduced for each particle present in the SM. Because a single Higgs chiral super-
multiplet would give rise to one new fermion, a weak isospin doublet with hypercharge
Y = +1/2, this would lead to an anomaly of the electroweak gauge symmetry, since the
SM fermions already satisfy the anomaly freedom conditions Tr[T 2

3 Y ] = Tr[Y 3] = 0.
The problem is evaded by introducing two Higgs supermultiplets: Hu with Y = +1/2
and Hd with Y = −1/2. They are called up-type Higgs and down-type Higgs, be-
cause the former gives mass to up-type-quarks and the latter to down-type-quarks and
charged leptons. The second reason why two Higgs supermultiplets are needed is the
generation of masses for all particles: Invariance of the Lagrangean under SUSY trans-
formations requires the superpotential to be a holomorphic function of the superfields
from which follows that the conjugate fields H∗

u and H∗
d must not appear. Table 2.1

lists all chiral and gauge multiplets that make up the content of the MSSM.

The superpotential for the MSSM is

WMSSM = ūyuQHu − d̄ydQHd − ēyeLHd + µHuHd , (2.9)

where the 3 × 3 matrices yu, yd and ye are the Yukawa coupling parameters. This
superpotential defines the MSSM, however, there are more gauge invariant holomorphic
terms:

W∆L=1 =
1

2
λijkLiLj ēk + λ

′ijkLiQj d̄k + µ
′iLiHu ,

W∆B=1 =
1

2
λ

′′ijkūid̄jd̄k .
(2.10)

Here, i = 1, 2, 3 again denotes the family index. These terms violate either baryon
number (B) or lepton number (L) conservation. The corresponding processes are not
observed, and in particular the absence of proton decay leads to tight constraints. To
simply postulate B and L conservation is not a good solution, because on the one
hand B and L are anomalous in the SM, and moreover this would lead to problems
when trying to build grand unified models, because these do not respect B and L
conservation separately. Though SU(5) respects the U(1) symmetry B−L, one should
rather impose a discrete symmetry, since global U(1) symmetries are in general broken
by gravity. A symmetry that accomplishes to forbid all terms in (2.10) but allows
for the terms in (2.9) is called matter parity [17, 18]. The basic principle is to assign
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2.2 SUPERSYMMETRY

Chiral multiplets Particles spin 0 spin 1/2 GSM

Q squarks, quarks (ũL, d̃L) (uL, dL) (3, 2) 1
6

ū ×3 families ũ∗R u†R (3̄, 1)− 2
3

d̄ d̃∗R d†R (3̄, 1) 1
3

L sleptons, leptons (ν̃, ẽL) (ν, eL) (1, 2)− 1
2

ē ×3 families ẽ∗R e†R (1, 1)1

Hu Higgs, higgsinos (H+
u , H

0
u) (H̃+

u , H̃
0
u) (1, 2)+ 1

2

Hd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) (1, 2)− 1

2

Vector multiplets Particles spin 1/2 spin 1 GSM

g gluino, gluon g̃ g (8, 1)0

W±,0 winos, W bosons W̃±, W̃ 0 W±, W 0 (1, 3)0

B0 bino, B boson B̃0 B0 (1, 1)0

Table 2.1.: The chiral and vector multiplets of the MSSM. The spin-1/2 fields
are left-handed Weyl fermions. GSM denotes the SM gauge group
SU(3)C × SU(2)L × U(1)Y .

a charge PM to each supermultiplet and only allow invariant terms to appear in the
superpotential. Matter parity is a discrete subgroup of B − L and can be defined as

PM = (−1)3(B−L). (2.11)

The quark and lepton supermultiplets all have PM = −1, whereas the Higgs supermul-
tiplets have PM = +1. Even if matter parity is an exact symmetry, B and L violation
can still occur due to higher-dimensional terms in the Lagrangean.

Since we deal with ten-dimensional string theory, a natural starting point is to consider
N = 4 SUSY, i.e. the minimal supersymmetry in ten dimensions. It possesses a vector
multiplet consisting of a ten-dimensional vector and a Majorana-Weyl spinor. In the
eight-dimensional gauge theory the vector is decomposed into an eight-dimensional
vector and two scalars, which will play an important role in section 3.5, and the spinor
becomes a Weyl spinor. Along the six-dimensional matter curves the latter decomposes
into two spinors, one of which forms anN = 2 vector multiplet with the six-dimensional
vector and the other one of which is combined with the four scalars into a N = 2
hypermultiplet. In the model which I will examine the matter therefore comes in
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2 PRELIMINARIES

N = 2 hypermultiplets, each of which results under a further decomposition to four-
dimensional N = 1 SUSY in two chiral multiplets in conjugate representations. The
number of zero modes for the fields of different chirality will be determined by gauge
fluxes, as will be further explained in section 3.6.

An additional motivation to consider SUSY is that within the MSSM, unlike the SM,
the gauge couplings unify at a scale of MGUT ≈ 2× 1016 GeV. This can be taken as a
hint for an underlying grand unified theory.

2.3. Grand unified theories

The easiest way to accomplish a unification of the SM gauge group into a single larger
group leads to the Georgi-Glashow model [1], where SU(3)C × SU(2)L × U(1)Y is
embedded in SU(5). The adjoint representation of SU(5), Ai

j, has dimension 52−1 = 24
and decomposes under SU(3)× SU(2)× U(1) as

24 = (8, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (3̄, 2)− 5
6
⊕ (3, 2) 5

6
. (2.12)

Identifying the first three of the SU(5) indices with the SU(3)C indices α = 1, 2, 3
and the last two with the SU(2)L indices a = 4, 5, Aα

β and Aa
b give rise to the eight

gluons Gα
β of SU(3)C and the vector fields W±,0 of SU(2), respectively. Since SU(3)

and SU(2) are already traceless themselves, there is a linear combination of Aα
β ∼ δαβ

and Aa
b ∼ δab such that Ai

i = 0, which is identified with the hypercharge boson B. The
entries of A with mixed indices are new gauge bosons and called X and Y bosons.
Schematically, the matrix A looks like

A =

(
G− 2B X, Y
X†, Y † W + 3B

)
. (2.13)

The SM fermions fit exactly into the antifundamental and the two-index antisymmetric
representations of SU(5), the 5̄ and the 10, as can be seen by comparing the represen-
tations of the SM fields under SU(3)C ×SU(2)L×U(1)Y , displayed in table 2.1, to the
decompositions

5̄ = (3̄, 1) 1
3
⊕ (1, 2)− 1

2
, (2.14a)

10 = (3̄, 1)− 2
3
⊕ (3, 2) 1

6
⊕ (1, 1)1 . (2.14b)

So we have:

5̄ : ψi =
(
d̄1, d̄2, d̄3, e, νe

)
L
, (2.15a)

10 : ψij =




0 ū3 −ū2 u1 d1
0 ū1 u2 d2

0 u3 d3
0 ē

0




L

. (2.15b)
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2.3 GRAND UNIFIED THEORIES

The SU(5) GUT can be promoted to a supersymmetric model by adding the fermionic
partners of the gauge bosons as well as the scalar partners of the quarks and leptons
in the respective representations. It is apparent that B and L cannot separately be
preserved. The decay of two fermions into another two fermions via the exchange of X
and Y bosons is a dimension-six operator and suppressed by 1

MX
2 . Since the unification

scale of the supersymmetric model is 2 × 1016 GeV, the predicted proton lifetime is
τ ≥ 1033 − 1034 years and therefore still compatible with observations.

The breaking of SU(5) to SU(3)C × U(1)EM occurs in two steps. First, one can arrive
at SU(3)C × SU(2)L × U(1)Y by the standard procedure of giving a VEV to a Higgs
field H24 in the adjoint representation 24, because this preserves the rank and contains
the total SM singlet (1, 1)0. In F-theory there exists an alternative way [6,14]: This is
switching on a hypercharge flux

FY ∝




2
2

2
−3

−3



. (2.16)

Group-theoretically both options are very similar because both FY and 〈H24〉 are pro-
portional to the hypercharge generator in the adjoint representation. In section 3.6 I
will say more on GUT breaking by hypercharge flux. For the second step, i.e. the SM
Higgs mechanism breaking SU(3)C × SU(2)L × U(1)Y further to SU(3)C × U(1)EM,
a VEV for a Higgs field in the fundamental representation 5 is needed, because this
contains the familiar SU(2) Higgs doublet. Of course, in the supersymmetric model
one fundamental representation for the up-type Higgs Hu and one antifundamental for
the down-type Higgs Hd are needed to get the Yukawa couplings

(yu)ij5Hu10Mi10Mj , (yd)ij 5̄Hd
5̄Mi10Mj , (2.17)

where i and j are family indices. The first term gives masses to up-type quarks and
the second term to down-type quarks and charged leptons. Additionally, the two Higgs
fields contain triplets that lead to proton decay through the terms in (2.17). The
challenge to give a large mass to the triplets while leaving the doublets light, which are
important ingredients in the low-energy theory, runs under the name doublet-triplet-
splitting problem. In the non-supersymmetric model the decay via Higgs triplets is a
dimension-six operator and therefore suppressed by 1

MX
2 . This process can still occur

in the supersymmetric theory, but in addition two fermions can now decay into two
scalars, which corresponds to a dimension-five operator, suppressed by only 1

MX
. All

possible dimension-five B or L violating operators from the superpotential are given
by

W
(5d)
6B, 6L =W 1

ijkl10
i
M10

j
M10k

M5l
M +W 2

ijk10
i
M10

j
M10k

M5Hd

+W 3
ij5

i
M5

j
M5Hu5Hu +W 4

i 5
i
M5Hd

5Hu5Hu

(2.18)

and from the Kähler potential

K
(5d)
6B, 6L = K1

ijk10
i
M10

j
M5k

M +K2
i 5Hu5Hd

10i
M . (2.19)
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2 PRELIMINARIES

In addition there is the dimension-four operator that gives rise to the terms in (2.10),

W
(4d)
6B, 6L = λijk5

i
M5

j
M10k

M , (2.20)

and the dimension-three operator

W
(3d)
6B, 6L = µ

′

i5
i
M5Hu . (2.21)

Matter parity forbids all operators in (2.18)–(2.21) except for W 1 and W 3. The W 3

operator leads to neutrino masses via the Weinberg operator LLHH . This might be
allowed if the operator is sufficiently suppressed. W 1 on the other hand, is very tightly
constrained by proton decay and must either be absent or very tiny.

The following analysis is performed within the framework of an SU(5) GUT, which
uses the smallest group that can unify the SM. Of course, there are also groups of
higher rank, like SO(10) or E6. The very nice feature of SO(10) is that one generation
of fermions can be accommodated in a single representation, the spinor representation
16. From its decomposition under the SM gauge group,

16 = (3, 2) 1
6
⊕ (3̄, 1)− 2

3
⊕ (3̄, 1) 1

3
⊕ (1, 2)− 1

2
⊕ (1, 1)1 ⊕ (1, 1)0 , (2.22)

one can see that it predicts the right-handed neutrino corresponding to the total singlet
(1, 1)0. The two Higgs fields belong to the 10 representation of SO(10). In E6 one
finds the fermionic matter as well as the Higgs fields in the representation 27, which
decomposes under SO(10) as

27Fermions = 16Fermions ⊕ 10X ⊕ 1X ,

27Higgs = 16X ⊕ 10Higgs ⊕ 1X .
(2.23)

The fields in the representations that carry an index X have to receive a high mass.

SU(5) is chosen as the GUT group because larger groups would lead to more restrictive
model building. Moreover, it has been shown in [19] that F-theory models with SO(10)
as the GUT group always contain exotic fields in their spectra. Yet, the groups SU(6),
SU(7), SO(12), E7 and E8 are needed in addition to SU(5), SO(10) and E6. The reason
is that in the higher-dimensional F-theory picture, as mentioned in the introduction,
the matter is localized on curves along which the gauge group is enhanced by one
rank, and Yukawa couplings are located at intersections of these curves with at least
a rank-two enhancement. The type of the matter in question can be inferred from the
decomposition of the adjoint of the enhanced group.

A 10 of SU(5) is present along a curve with the enhanced symmetry group SO(10),
and for a 5 of SU(5) one needs an SU(6) symmetry enhancement.

The relations between the groups can be examined best when displaying them in terms
of Dynkin diagrams:

11



2.3 GRAND UNIFIED THEORIES

• SU(5):

• SU(6):

• SO(10):

Both groups can be obtained from SU(5) by adding one node at the appropriate po-
sition. Yukawa couplings descend from the cubic interaction of the adjoint belonging
to groups with at least a rank-two enhancement compared to SU(5). An SO(12) en-
hancement yields the down-type Yukawa coupling 5̄Hd

5̄M10M and an E6 enhancement
the up-type coupling 5Hu10M10M (see section 3.4). Both groups can be broken to
SU(5) as well as to SO(10) by deleting the corresponding nodes.

• SO(12):

• E(6):

For a sufficiently large mixing in the Cabibbo–Kobayashi–Maskawa (CKM) matrix, it
is favorable to have the up- and down-type Yukawa couplings take place in one point,
which would be a point of E7, as can be seen by comparing the Dynkin diagrams of
E7, E6 and SO(12).

• E7:

Taking neutrinos into account together with the mixing in the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix pushes the symmetry further to E8 [20].

• E8:

The fact that all the groups listed above can be obtained by deleting appropriate nodes
from the Dynkin diagram of E8 is a hint for a naturally underlying E8 structure, which
is also heavily explored in the heterotic E8 × E8 string theory [21–24]. In the models
which I will consider, the point of E8 will give rise to all particles and interactions of
the MSSM.
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3. F-theory

F-theory can be thought of being the correct way to describe Type IIB compactifications
with seven-branes in generic situations where one cannot assume the string coupling to
be small. Seven-branes have a strong backreaction on the ambient space, which causes
the string coupling to vary over the compact space and leave the perturbative regime
somewhere. The problem of describing strong coupling effects is elegantly solved by
encoding information in the geometry: A CY fourfold is constructed as an elliptic
fibration over the three-complex-dimensional internal space, where a singularity of the
fibration indicates the presence of seven-branes. From the phenomenological point
of view F-theory is promising because it is still based on branes and thus admits a
bottom-up approach, where some questions concerning particle physics can be answered
comparatively easily in local models, though the branes in question are no longer
exclusively D- and O-planes. The new branes exhibit complicated backreactions, and
it is a remarkable property of the F-theory framework that consistency requirements
like tadpole cancellation are automatically incorporated.

In section 3.1 I will start with a summary of the basic ingredients of Type IIB orien-
tifolds, since many features of F-theory are already present in intersecting brane models,
and give the proper definition of F-theory from the Type IIB perspective in section 3.2.
In order to explain why exceptional gauge groups arise, I will make some use of the
duality between M- and F-theory, which is presented in section 3.3. In section 3.4 I
will continue to explain the geometry of F-theory compactifications as described by the
Weierstraß model, which, apart from deducing the positions of seven-branes, in partic-
ular allows to read off which gauge group is realized on a given seven-brane. This is
based on the Kodaira classification of singular fibers [25]. Afterwards, I will introduce
the so called Tate model, which locally allows to determine the gauge group, the matter
curves and interaction points of a given F-theory geometry. In section 3.5 an alterna-
tive description of the geometry, also valid on local patches of the internal space, will
be given, which is based on eight-dimensional field theory and is crucial for chapters
4-6. The connection between the Tate model and the field theoretic description will be
made in succession. In section 3.6 I will comment on the different levels of locality that
can be considered in F-theory model building, thereby introducing the spectral cover
formalism and presenting some relevant information for the later analysis.

3.1. Basics of intersecting brane models

Intersecting brane models are based on the fact that open strings end on D-branes. For
a review, see e.g. [26]. A string which has both ends on the same brane is massless and
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3.1 BASICS OF INTERSECTING BRANE MODELS

can move along the brane, whereas strings that stretch between different branes become
massive. However, if the branes intersect, the strings extending between them get
localized at the intersection, and additional massless modes appear in the configuration.

There exist U(N) gauge bosons on the worldvolume of N coincident D-branes, whose
low-energy dynamics is governed by a Super–Yang–Mills (SYM)theory with gauge
group U(N). This can always be decomposed as U(N) = SU(N) × U(1). Along
the intersection of the stack with another D-brane the symmetry gets enhanced by one
rank to U(N + 1). Strings can now stretch between the stack and the extra brane and
give rise to localized hypermultiplets. In general, this matter transforms in the bifun-
damental representation of the groups realized on the respective stacks. For example,
if the gauge group of one stack is SU(5), the transformation property of such matter
under it can be inferred from the decomposition of the adjoint of the enhanced group.
From

SU(6) → SU(5)× U(1)

35 → 240 ⊕ 10 ⊕ 51 ⊕ 5̄−1

(3.1)

one can see that the 5 of SU(5) localizes where the symmetry is enhanced to SU(6).

An O-plane which is coincident with N D-branes leads to the group SO(2N). From
the decomposition of the adjoint of SO(10)

SO(10) → SU(5)× U(1)

45 → 240 ⊕ 10 ⊕ 102 ⊕ 10−2

(3.2)

it follows that the 10 of SU(5) is localized where an O-plane intersects a stack of five
D-branes.

Finally, there can be intersections of multiple brane stacks corresponding to the meeting
of several matter curves in a point. A point of SO(12) symmetry is created where two
5 curves and a 10 curve meet. The cubic interaction of the adjoint

SO(12) → SU(5)× U(1)a × U(1)b (3.3)

66 → 240,0 ⊕ 10,0 ⊕ 10,0 ⊕ 5−1,0 ⊕ 5̄1,0 ⊕ 51,1 ⊕ 5̄−1,−1 ⊕ 100,1 ⊕ 100,−1 (3.4)

allows for the coupling 5̄ 5̄ 10 that gives mass to the down-type quarks in an SU(5)
GUT.

For the up-type Yukawa coupling 5 10 10, in contrast, a point of E6 enhancement is
needed1:

E6 → SU(5)× U(1)a × U(1)b

78 → 240,0 ⊕ 10,0 ⊕ 10,0 ⊕ 1−5,−3 ⊕ 15,3 ⊕ 5−3,3 ⊕ 5̄3,−3 ⊕ 10−1,−3

⊕ 101,3 ⊕ 104,0 ⊕ 10−4,0 .

(3.5)

A shortcoming of Type IIB intersecting brane models is the lack of exceptional gauge
groups – they cannot be engineered using exclusively D-branes and O-planes. There
are, however, more general branes whose appearance can be explained when taking the
SL(2,Z) symmetry of Type IIB string theory seriously, as we will see now.

1The up-type Yukawa coupling in Type IIB models can only be generated by D-brane instantons [27].
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3 F-THEORY

3.2. F-theory from Type IIB orientifolds

In Type IIB theory there is a field, called the axio-dilaton:

τ = C0 +
i

gs
. (3.6)

The D7-brane is magnetically charged under C0 and gs is the string coupling. Su-
persymmetry requires the axio-dilaton to be a holomorphic function in the complex
coordinate z perpendicular to a seven-brane. When encircling the D7-brane, a mo-
nodromy acts on the axio-dilaton:

τ → τ + 1 . (3.7)

From this it is clear that close to the brane the dependence of the axio-dilation on the
transverse coordinate is logarithmic:

τ(z) = τ0 +
1

2πi
ln(z − z0) + regular terms in z . (3.8)

This implies that the imaginary part of τ becomes infinite at the position of the seven-
brane and thus, due to (3.6), the string coupling gs is zero. The gauge coupling,
however, is independent of gs and determined only by the volume of the internal four-
cycle wrapped by the seven-branes.

To extend the set of branes from the well-known D-branes and O-planes to the aforesaid
more exotic branes, it is important to note that the transformation (3.7) is just a special
case of a general SL(2,R) transformation

τ → aτ + b

cτ + d
, (3.9)

under which the classical Type IIB effective action is invariant. The classical symmetry
is broken to SL(2,Z) by a D(−1) instanton at the non-perturbative level. The NS-NS
field B2, under which a fundamental string (F1-string) is electrically charged, and the
RR two-form C2 form an SL(2,Z) doublet, which transforms as

(
C2

B2

)
→

(
aC2 + bB2

cC2 + dB2

)
=M

(
C2

B2

)
. (3.10)

The objects that are electrically charged under C2 are D1-strings, and therefore F1- and
D1-strings behave like a doublet under SL(2,Z), too. Representing the F1-string by(
1
0

)
and the D1-string by

(
0
1

)
, one can define a general (p, q)-string as a string with B2

charge p and C2 charge q. The branes on which (p, q)-strings end, are (p, q)-branes [28].
An ordinary D7-brane is just a (1, 0)-brane.

We have seen that a D7-brane has a characteristic monodromy:

MD =M1,0 =

(
1 1
0 1

)
. (3.11)
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3.3 F-THEORY FROM M-THEORY

In fact, any general (p, q)-brane can be characterized by its action on the background:

Mp,q = gp,qM1,0g
−1
p,q =

(
1− pq p2

−q2 1 + pq

)
, (3.12)

where

gp,q

(
1
0

)
=

(
p
q

)
. (3.13)

The monodromy of an O7-plane can be expressed as the linear combination

MO =M3,−1M1,−1 , (3.14)

since this maps the vector

(
1
0

)
to minus itself and therefore corresponds to a reversal

of the string orientation, which is precisely the effect of an O-plane. MD and MO

do not generate the full SL(2,Z) symmetry, so in general it is necessary to consider
different (p, q)-branes as well. By means of (3.12) a single (p, q)-brane can always be
mapped into a D7-brane, but this does not work if there are several (p, q)-branes of
different type present in a compactification at the same time. Furthermore, it is a
non-trivial problem to find configurations of (p, q)-branes that are self-consistent. The
rescue is the celebrated geometrization of the monodromies induced by the different
seven-branes: The axio-dilaton is identified with the complex structure of an auxiliary
torus, which is fibered over the internal space B3 and thus contains the information
about the different seven-branes in the compactification. This works so well because
SL(2,Z) is also the symmetry group of a torus. The two additional dimensions of the
torus are the reason why F-theory is said to be twelve-dimensional, although they are
no physical dimensions.

It follows from (3.8) that the torus degenerates at the position of seven-branes, but
later we will see that the fibration contains much more information then just the
location of seven-branes. To summarize this discussion, let me conclude this section
with the F-theory conjecture:

The physics of Type IIB orientifold models with seven-branes compactified on the
complex threefold B3 is encoded in the geometry of an elliptic fibration

T 2 → Y4 → B3.

3.3. F-theory from M-theory

The duality between F- and M-theory, which is the topic of this section, clarifies why
the complex structure τ of the elliptic curve plays a role in the F-theory framework
whereas the volume does not. This is not apparent when only considering the relation
to Type IIB string theory. Apart from that, the duality explains why the four-complex-
dimensional space made up by the elliptic fibration has to be a CY manifold.
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3 F-THEORY

There is a conjecture stating that eleven-dimensional supergravity is the low-energy
limit of M-theory. To approach F-theory, this eleven-dimensional theory is compactified
on the space R1,8 × T 2, where R1,8 denotes a nine-dimensional Minkowski space and
T 2 a torus spanned by the cycles SA and SB [29].

First of all, the duality between M- and Type IIA theory is explored by letting one
cycle – here SA is chosen – shrink to zero size. Since the coupling of Type IIA theory
is given in terms of the string length ls and the radius RA of SA by gIIA ≃ RA

ls
, one

obtains the weak coupling limit. The remaining circle SB can now be used to perform a
T-duality transformation from Type IIA to Type IIB theory. The dual radius is given

by R̃B = l2s
RB

. Therefore, one obtains Type IIB theory on R1,9 if the radius RB vanishes,

too. The dimension that is needed for R1,8 to become the ten-dimensional Minkowski
space is hence provided by one cycle of the torus, which grows large. The volume of
the torus cannot be a physical field because it is a step of the duality transformation
to let the volume of the torus approach zero.

Furthermore, the fact that the imaginary part of its complex structure is the string
coupling can be seen by noting that after the T-dualization the Type IIB string coupling
is gIIB ≃ ls

RB
gIIA ≃ RA

RB
≃ Im τ−1. The simple argument presented here of course only

applies to rectangular tori but can be generalized [7].

The upshot of the F/M- theory duality is that the elliptic fiber of F-theory is identified
with the M-theory torus along which the M/Type IIB duality is performed. For realistic
models, one must start with a compactification of the eleven-dimensional theory on
the space R1,2 × Y4, where T 2 → Y4 → B3. This elliptic fibration must be a CY
fourfold to obtain N = 1 supersymmetry in four dimensions, because in this case
the M-theory compactification leads to a three-dimensional effective theory with four
supercharges [30]. Following the same steps, one ends up with Type IIB on B3 ×R1,3.

In addition, the F/M- theory duality provides a way to elucidate the appearance of
exceptional gauge groups in F-theory. I will come back to this point later.

3.4. Geometrical description

Weierstraß Model

An elliptic curve can be obtained as a hypersurface in a weighted projective space. The
projective space WP2,3,1, chosen here, is defined by three complex coordinates (x, y, z)
with the additional identification

(x, y, z) ∼ (λ2x, λ3y, λz) , λ ∈ C∗ . (3.15)

A torus is Ricci-flat, and a necessary condition for this is that the polynomial cutting
it out of WP2,3,1 is a homogeneous polynomial of degree six under rescaling by λ. Any
such polynomial can be brought to the form

PW = y2 − x3 − fxz4 − gz6 = 0 . (3.16)
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3.4 GEOMETRICAL DESCRIPTION

This is the famous Weierstraß form, where the complex numbers f and g parameterize
the shape of the torus. Promoting this single torus to an elliptic fibration over the base
B3 with coordinates ui, amounts to declaring f and g to be functions of the ui. This
fibration is called a Weierstraß model. In contrast to other possible spaces, WP2,3,1 has
the property of possessing an underlying E8 structure, as will become clear later when
examining the Kodaira classification. From section 3.1 we know that the fiber must
become singular at the position of seven-branes. In terms of the above description this
translates into the fact that the surface cut out by (3.16) degenerates, which is the case
if the discriminant

∆ = 27g2 + 4f 3 (3.17)

of (3.16) vanishes. The equation ∆ = 0 itself cuts out a codimension-one surface S of
the base B3, which is precisely the divisor wrapped by the seven-branes. The geometry
of a general F-theory compactification is depicted in figure 3.1.

Figure 3.1.: Schematic illustration of a general F-theory compactification: R1,3

denotes the four-dimensional Minkowski space and T 2 → Y4 → B3

the eight-dimensional CY manifold obtained as an elliptic fibration
over the base B3. Seven-branes locate where the torus T 2 degene-
rates.

Emergence Of Gauge Groups

Even more important than the positions of the seven-branes is to know the precise
way that the fiber degenerates over these locations, because this information tells us
which gauge group is present on the branes. The Kodaira classification contains the
different types of singularities and the corresponding gauge groups, as is displayed in
table 3.1, taken from [31]. The mildest degeneration is the I1 singularity, which does
not create a true singularity in the CY fourfold and corresponds to a single seven-brane.
It appears where the discriminant (3.17) vanishes to first order, whereas both f and g
are non-vanishing. To obtain an actual singularity in the CY manifold, which allows
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ord(f) ord(g) ord(∆) fiber type singularity type
≥ 0 ≥ 0 0 smooth none
0 0 n In An−1

≥ 1 1 2 II none
1 ≥ 2 3 III A1

≥ 2 2 4 IV A2

2 ≥ 3 n+ 6 I∗n Dn+4

≥ 2 3 n+ 6 I∗n Dn+4

≥ 3 4 8 IV ∗ E6

3 ≥ 5 9 III∗ E7

≥ 4 5 10 II∗ E8

Table 3.1.: Kodaira classification of singular fibers

for non-Abelian and even exceptional gauge groups, ∆ must develop a higher-order
singularity.

The connection between a singularity in the CY fourfold and the appearance of gauge
groups can be understood by blowing up the singularity and once more employing the
F/M-theory duality. The resolution is performed by substituting the singular fiber with
a tree of P1s such that the new space is still a CY manifold but non-singular. The
number of P1s that is needed equals the rank of the group. The divisor which is formed
in the new non-singular CY fourfold Ỹ4 by the fibration of one P1 over S will be called
Di in the following. Furthermore, one can define the divisor D0 = T 2−∑

i aiDi, where
T 2 is the torus over a point of S and ai are the Dynkin labels of the adjoint of the Lie
algebra of G. These rank(G) + 1 divisors then satisfy the equation

∫

Ỹ4

[Di] ∧ [Dj ] ∧ ω̃ = −Cij

∫

S

ω̃ , i, j ∈ 0, · · · , rank(G) , (3.18)

where [Di] denotes the Poincaré dual two-form to Di, ω̃ ∈ H4(B3) and Cij are the
entries of the Cartan matrix of the group G. One can visualize this in the following
way:

Figure 3.2.: Two examples displaying the relation between a singularity in the
elliptic fibration and a gauge group. The singularity in (a) is of
type A1

∼= SU(2) and in (b) of type A2
∼= SU(3). The diagrams to

the right of the arrow are the respective extended Dynkin diagrams
of SU(2) and SU(3).

In the F-theory limit all these P1s shrink to zero size and the gauge bosons in the
Cartan subalgebra of G correspond to massless vector states obtained when reducing
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3.4 GEOMETRICAL DESCRIPTION

the M-theory three-form C3 along the P1s. The other gauge bosons are due to the
M-theory M2-brane wrapping chains of P1s.

The type of singularity is allowed to vary over a given divisor S ⊂ B3. In Type IIB
theory the symmetry group gets enhanced where other seven-branes intersect the GUT
stack, leading to matter curves and interaction points. Something similar occurs in
F-theory [32]: The divisors Da, which are wrapped by seven-branes, can intersect and
form complex codimension-one curves Cab = Da∩Db. In the blow-up of the singularities
along Da and Db to a non-singular CY manifold, a tree of P1s had to be inserted for
each divisor. These will now collide to form the extended Dynkin diagram of a group
with rank

rank(Gab) = rank(Ga) + rank(Gb) . (3.19)

This group is not really a gauge group because there is no vector multiplet to the
corresponding N = 1 gauge theory, but from the decomposition of the adjoint of Gab,

Gab → Ga ×Gb

adGab
→ (adGa , 1)⊕ (1, adGb

)⊕
∑

(Rax, Rbx) ,
(3.20)

one can deduce the representations (Rax, Rbx) of the localized matter.

Tate Model

There exists a scheme based on the Tate algorithm which captures this additional
information about the singularity structure of an elliptic fibration. The Weierstraß form
can be brought into the Tate form by performing a local coordinate redefinition [31]:

PW = x3 − y2 + xyza1 + x2z2a2 + yz3a3 + xz4a4 + z6a6 = 0 . (3.21)

Because of the scaling relations in (3.15), one can switch to inhomogeneous coordinates
where z = 1. Instead of f and g, the shape of the torus is now parameterized by
the ai, which consequently are functions of the coordinates ui of B3 as well. The
resulting symmetry group depends on the vanishing orders of the different ai and the
discriminant. The relation of the ai to f and g is given by

f = − 1

48

(
β2
2 − 24β4

)
, g = − 1

864

(
−β3

2 + 36β2β4 − 216β6
)
,

β2 = a21 + 4a2 , β4 = a1a3 + 2a4 , β6 = a23 + 4a6 .
(3.22)

The local validity of the Tate model is manifest in the non-linearity of these equa-
tions. Information about the intersection of branes can be obtained by examining the
(rescaled) discriminant, which can now be written as

∆ = −1

4
β2
2(β2β6 − β2

4)− 8β3
4 − 27β2

6 + 9β2β4β6 (3.23)

and in general is a product of several factors, each of which corresponds to one seven-
brane.
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In the next paragraph an SU(5) stack of seven-branes wrapping the twofold S will
be considered which is given by a polynomial w = 0. For an SU(5) singularity the
required vanishing degrees are:

∆ a1 a2 a3 a4 a6
5 0 1 2 3 5

Denoting by bk functions of the base coordinates which do not contain an overall factor
of w, this translates into

a1 = b5 , a2 = b4w , a3 = b3w
2 , a4 = b2w

3 , a6 = b0w
5 . (3.24)

The discriminant then reads:

∆ = −w5
(
b45P + wb25(8b4P + b5R) + w2(16b23b

2
4 + b5Q) +O(w3)

)
, (3.25)

P = b23b4 − b2b3b5 + b0b
2
5 . (3.26)

Just as P , Q and R are also functions of the bk. The factor w5 corresponds to the five
coincident seven-branes responsible for the gauge group SU(5). The other factor does
in general not vanish at w = 0 and consequently is associated with a brane that does
not coincide with the SU(5) stack. Furthermore, the expression in brackets does not
factorize further and thus carries an I1 singularity which is characterized by an order-
one vanishing locus of the discriminant. Therefore, the extra brane does not carry
a non-Abelian gauge symmetry. If, however, particular linear combinations of the bk
become zero at certain points of B3, the overall vanishing order of the discriminant
changes and this leads to symmetry enhancements. They correspond to intersections
of the SU(5) stack and the extra brane that is identified with the I1 singularity and does
not possess any non-Abelian gauge group. The rank of the local symmetry groups along
the curves can therefore only differ from the rank of SU(5) by one. The first possibility
is an enhancement to SO(10), which gives rise to the 10 of SU(5), and the other is to
SU(6), corresponding to the 5, as we have seen in (3.2) and (3.1), respectively. The
former option leads to a D5 singularity, for which the vanishing orders must be:

∆ a1 a2 a3 a4 a6
7 1 1 2 3 5

This can be achieved when

P10 : w = 0 ∩ b5 = 0 . (3.27)

The A5 singularity corresponding to SU(6) only requires a vanishing of ∆ to order six:

∆ a1 a2 a3 a4 a6
6 0 1 3 3 6

Therefore, one obtains

P5 : w = 0 ∩ P = 0 . (3.28)
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In addition to the 5 and 10 one also needs GUT-singlets to generate masses for all
quarks and leptons. GUT singlets localize where the I1 brane intersects itself to form
an A1 singularity.

This discussion can be generalized to intersections of matter curves, where the symme-
try enhancement will be at least of rank two. For the E6 symmetry that is needed for
the up-type Yukawa coupling, the condition is

10 10 5 : b5 = b4 = 0 (3.29)

and for the down-type Yukawa coupling located at a point of SO(12) it is

10 5̄ 5̄ : b5 = b3 = 0 (3.30)

in order to arrive at the required vanishing orders:

Group ∆ a1 a2 a3 a4 a6
E6 8 1 2 2 3 5

SO(12) 8 1 1 3 3 5

3.5. Gauge theoretic description

Since the surface S locally carries symmetry groups larger than GGUT, there is a differ-
ent perspective to the one introduced in the previous section: One can (at least locally)
think of the worldvolume theory on S as a gauge theory with a larger gauge group which
is broken at generic points. The appropriate description for this is eight-dimensional
N = 1 SYM field theory, which will be introduced in the following. Subsequently, I
will make the connection to the Tate model and specialize the gauge theoretic descrip-
tion to what is needed for the study of chapter 4. A crucial ingredient is seven-brane
monodromy. The gauge theoretic approach allows to explicitly deduce how brane con-
figurations that exhibit monodromies are to be dealt with. Apart from providing a
convenient formalism for the analysis of intersecting branes and monodromy, it has an
important generalization to what is called T-branes, which are the content of chapter 6.

3.5.1. Field theory of seven-branes

A stack, i.e. a layer of coincident seven-branes, can be studied with an eight-dimensional
gauge theory supporting an adjoint complex Higgs field Φ that parameterizes the nor-
mal motion of the branes, and a gauge field A, which is a one-form. In F-theory the
branes extend through four-dimensional Minkowski space but wrap the compact four-
cycle S in the internal space. To preserve unbroken N = 1 SUSY in four dimensions,
the field theory must be twisted such that Φ is a (2, 0)-form on S, see [15]. In order to
investigate configurations of branes, i.e. more complicated setups where the branes can
intersect, one must consider a situation where the Higgs field has a VEV 〈Φ〉 which
varies over the surface S. This VEV must be understood as a background and part
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of the definition of the field theory at hand. Since S is four-dimensional, whereas the
the internal physical space of the compactification is six-dimensional, the most general
Higgs field is one which allows the branes to move along one complex dimension:

〈Φ〉 = c1aT
a + ic2aT

a . (3.31)

The T a denote the Hermitean generators of the Lie algebra corresponding to the given
gauge group, whereas c1 and c2 are arbitrary real fields such that the resulting Higgs
field does not need to be Hermitean. In general,

[〈Φ〉†, 〈Φ〉] 6= 0 . (3.32)

The special case of an Hermitean background Higgs field permits to take 〈Φ〉 to reside
in the Cartan subalgebra. One can then diagonalize it and obtain the intersecting
brane picture: Branes meet, and consequently the symmetry gets enhanced, where two
or more eigenvalues of the Higgs field are coincident. For this case it is also clear from
the string perspective how the matter emerges: It corresponds to strings stretching
between different branes.

The gauge field A and the Higgs field Φ obey the following BPS equations, which are
enforced by SUSY:

F 0,2
A = 0 , (3.33)

∂̄AΦ = 0 , (3.34)

ω ∧ FA +
i

2
[Φ†,Φ] = 0 . (3.35)

Here, ω denotes the Kähler form on S. The first two equations result from F -flatness
conditions and are invariant under the complexified group of gauge transformations.
This property is important because the space of solutions to the first two equations
modulo complexified gauge transformations is the same as the space of solutions to
all three equations modulo unitary gauge transformations. The third equation is a
D-flatness condition. So far this theory describes a stack of branes.

More interesting configurations are obtained by switching on a background. A and Φ
are decomposed into background and fluctuations as follows:

A = 〈A〉+ a , (3.36)

Φ = 〈Φ〉+ φ . (3.37)

The linearized BPS equations, the solutions of which are matter fields, are

∂̄Aa = 0 , (3.38)

∂̄Aφ+ [a,Φ] = 0 , (3.39)

ω ∧ (∂Aa− ∂̄Aa
†) +

i

2
([Φ†, φ] + [φ†,Φ]) = 0 . (3.40)
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Here and from now on, A and Φ stand for 〈A〉 and 〈Φ〉. The space of solutions to
(3.38)–(3.40) has to be quotiented by the allowed gauge transformations. Under a
gauge transformation

a→ a+ ∂̄Aχ , (3.41)

and from (3.39) one can see that

φ → φ+ [Φ, χ] . (3.42)

How complicated it is to solve (3.38)–(3.40) modulo (3.41)–(3.42) depends on the back-
ground Higgs field . The simplest case is again the intersecting brane case where the
commutator in (3.35) vanishes. It is only in this case that the equations for the gauge
field A,

F 0,2
A = 0 , (3.43)

ω ∧ FA = 0 , (3.44)

decouple from the Higgs field. If, however, the commutator is not zero, A and Φ are
entangled, which is the reason why such configurations are called bound states. This
is always the case for adjoint Higgs fields whose matrices become upper triangular at
some points of the brane worldvolume because these cannot be diagonalized everywhere.
Configurations where a stack of seven-branes gets deformed by a holomorphic Higgs
field with this property are called T-branes. They were first considered in [15], on
which most of the discussion in this chapter is based. I will come back to non-diagonal
Higgs fields later when introducing seven-brane monodromy.

3.5.2. Diagonal case

For now, I will consider an E8 gauge theory on the worldvolume of S which is Higgsed
down to SU(5)GUT at generic points by a diagonal Higgs field. The reason why E8 is a
good starting point was explained at the end of chapter 2. The commutant of SU(5)GUT

in E8 is also an SU(5), which will be called SU(5)⊥ from now on, and it is broken further
down to U(1)4 by the Higgs field. The extra U(1)’s correspond to the transverse branes
that intersect the SU(5) stack and are generically broken2. Still, they remain as global
selection rules for the Lagrangean, which is the main reason why the gauge theoretic
description is so useful. The matter curves are the loci where certain entries of the
Higgs vanish or become degenerate such that the symmetry group is locally enhanced.
One can determine the curves as well as the corresponding representations that localize
on them by decomposing the adjoint of E8:

E8 −→ SU(5)× SU(5)⊥

248 −→ (24, 1)⊕ (1, 24)⊕ (10, 5)⊕
(
5, 10

)
⊕
(
10, 5

)
⊕

(
5, 10

)
.

(3.45)

2This is a global issue that cannot be analyzed in a local model [33].
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Denoting the diagonal entries of the Higgs field by ti (i = 1, · · · , 5), Φ acts on the basis
ei of the 5 of SU(5)⊥ as Φei = tiei. The eigenvalues have to satisfy the tracelessness
condition

5∑

i=1

ti = 0 . (3.46)

The 10 and the non-Cartan elements of the 24 are spanned by the products ei ∧ ej
and ei ∧ e∗j , respectively, where i 6= j. These elements are again eigenvectors of Φ
with eigenvalues ti + tj and ti − tj . As mentioned above, the matter curves can be
expressed in terms of the eigenvalues ti of the Higgs. From the decomposition (3.45) it
is apparent that the representations of SU(5) and SU(5)⊥ come in pairs. Focusing on
the representations of the unbroken SU(5), the equations for the matter curves read:

10 : ti = 0 , 5 :− (ti + tj) = 0 , 1 :± (ti − tj) = 0 . (3.47)

For the 10 and 5 there are overall minus signs in the equations because they correspond
to conjugate representations of SU(5)⊥. Still, the matter curves are geometrically the
same since the matter comes in hypermultiplets.

With (3.27) and (3.28) I have already shown how the 5 and 10 matter curves can be
found using the Tate model defined by (3.21) and (3.24):

y2 = x3 + b5xy + b4x
2w + b3yw

2 + b2xw
3 + b0w

5 . (3.48)

The connection between the two approaches is that the coefficients bk are elementary
symmetric polynomials of degree k in the ti. If one rephrases the conditions (3.47) for
the localization of matter representations in terms of the bk, the resulting equations
are precisely (3.27) and (3.28).

3.5.3. Seven-brane monodromy

An obvious consequence is that the bk do not fully specify the ti, since the relation is
nonlinear. In particular it can happen that one encounters branch cuts when solving
for the ti, which leads to monodromies permuting some of them. There has been made
use of this by postulating that the matter curves corresponding to t’s that are related
by a monodromy get identified and give rise to the same zero modes [20, 34–36]. This
is necessary to have a tree-level top quark Yukawa coupling 10top10top5Hu , which is
favorable because of the large mass difference between the third and the first two SM
families. For a term in the Lagrangean to be allowed by gauge symmetry, the ti of the
fields appearing in the operator have to sum up to zero, possibly using (3.46). Since
the top and the anti-top quark are both in the same 10 representation, the desired
coupling can only be achieved provided the 10M ’s participating in the mass term are
the same. Keeping in mind that the up-type Higgs has a charge of the form −ti−tj , the
10M ’s must have charges ti and tj for the term to be gauge invariant. Since ti 6= tj , see
(3.47), this would imply that the 10’s are different and thus at least a Z2 monodromy
is required in order to identify them. Its action is chosen to be t1 ↔ t2 so that the top
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quark generation is assigned to the curve 101 given by the weights {t1, t2}. Then there
exists a tree-level up-type Yukawa coupling that leads to a heavy top quark provided
the up-type Higgs curve 5Hu is fixed to be the curve with charge −t1 − t2. In terms of
intersecting branes this is consistent with a transverse brane that intersects the GUT
stack twice at the same point and therefore itself. Locally one cannot distinguish this
setup from a configuration where the two branes are really distinct objects.

The T-brane formalism provides a way to explicitly confirm the correctness of the above
postulate. To this end, I will explain how the diagonal background with branch cuts is
obtained from a single-valued holomorphic background and deduce the consequences
for the spectrum following [15].

The monodromy group is the Galois group of the spectral polynomial

PΦ(z) = det(z1− Φ) (3.49)

of the Higgs field, which is to be understood as a polynomial in z with coefficients
themselves being polynomials in the worldvolume coordinates x, y on the brane3. For
more information on Galois groups, see e.g. [37]. In the diagonal case

PΦ(x, y, z) =
5∏

i=1

(z − ti(x, y)) , (3.50)

and it is easy to see that the Higgs field deforms the brane stack at z = 0 to
PΦ(x, y, z) = 0. This remains to be true for general non-diagonal Higgs fields that
describe a configuration of a branes previously located at z = 0: The position of
seven-branes in the space spanned by x, y and z is always given by the equation

PΦ(x, y, z) = 0 . (3.51)

In general, there are several holomorphic matrices with the same spectral equation. It
turns out that this equation alone does not contain sufficient information to deduce all
aspects of the physics of a configuration as defined by a given Higgs field Φ, but that
one needs to know its explicit matrix form. For explicit examples and more details on
this, see chapter 6.

However, there is a special class of Higgs fields, for which the spectral equation carries
in fact the complete information. Because of this property the Higgs fields belonging to
this class are called reconstructible4. I will only consider the case of Higgs fields in the
adjoint of U(n) groups whose eigenvalues vanish at the origin. For a Higgs field to be
reconstructible, it is a necessary and sufficient condition that the surface which is cut
out of the space with the complex coordinates x, y, z by PΦ(x, y, z) = 0 is non-singular.
When dealing with a local model, the only relevant singularities are those which reside
at the origin (x, y, z) = (0, 0, 0). A spectral polynomial always has the form

PΦ(x, y, z) = zn + σ2(x, y)z
n−2 − σ3(x, y)z

n−3 + · · ·+ (−1)nσn(x, y) , (3.52)

3These worldvolume coordinates x, y of the brane belong to the coordinates ui of the base B3 and
are not to be confused with the coordinates x and y used above.

4This also includes Higgs fields that can be written in a block-diagonal form where each block itself
is reconstructible.
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where σk is the k-th symmetric polynomial in the eigenvalues of Φ. Because of the
tracelessness condition σ1 does not appear. At the origin the presence or absence
of a singularity is therefore solely determined by the vanishing order of σn = detΦ.
Thus, a Higgs field is reconstructible iff its determinant vanishes to exactly first order.
Furthermore, it was shown in [15, 38] that a stack of n branes which is deformed by
a reconstructible n × n Higgs field is nothing but a single smooth recombined brane.
Now one can also intuitively understand why the surface cut out by PΦ(x, y, z) = 0
had to be non-singular.

The picture strongly resembles the action of a monodromy which can also identify
several branes as an actually single object. It is helpful to consider an example of a
Higgs field breaking U(3) → U(1)2:

Φ =



0 1 0
x 0 0
0 0 0


 . (3.53)

The spectral polynomial is PΦ = z(z2−x) and thus exhibits a Z2 monodromy. If x 6= 0,
this Higgs field can be diagonalized:

gΦg−1 =



√
x 0 0
0 −√

x 0
0 0 0


 , g =




√
x 1 0

−√
x 1 0

0 0 1


 . (3.54)

In this gauge the background Higgs field is not single-valued but exhibits branch cuts.
Whenever the monodromy group is nonzero, a Higgs field cannot globally be diagona-
lized. The exchange of the eigenvalues when encircling the y-axis can also be expressed
by acting with an element of the Weyl group of U(3) on Φ:

W =



0 1 0
1 0 0
0 0 1


 , Φ(e2πix, y) = WΦ(x, y)W−1 . (3.55)

Therefore, the monodromy group acts via its embedding in the Weyl group, and only
the Weyl invariant data carries gauge independent information. This has consequences
for the spectrum: The matter which is charged under the remaining unbroken gauge
group is a doublet in the upper right corner of the perturbation5 φ:

φ =



0 0 φ+

0 0 φ−
0 0 0


 . (3.56)

Since φ is a perturbation of the background Higgs field Φ, an element W of the Weyl
group acts on it:

(
φ+

φ−

)
(e2πix, y) =

(
0 1
1 0

)(
φ+

φ−

)
(x, y) . (3.57)

5The corresponding conjugate fields in the lower left corner are not displayed to simplify matters.
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The action of the Weyl group therefore identifies the matter curves at
√
x and −√

x as
a single one at x = 0.

Every monodromy group G = G1 × G2 × · · · × Gj can be realized by a Higgs field of
the form




Ψ1

Ψ2

. . .

Ψj

0



, (3.58)

breaking SU(k1 + k2 + ... + kj + n) → SU(n), where each Ψi is reconstructible. This
corresponds to a stack of D7-branes intersected by j smooth D7-branes, which meet
the SU(n) stack, located at z = 0, along the curves where detΨi = 0. The charged
matter then resides in blocks Bi,

φ =




B1

B2
...
Bj

Bc
1 Bc

2 · · · Bc
j 0



, (3.59)

each of which gives rise to exactly one localized field transforming as the antifundamen-
tal under the unbroken symmetry SU(n). The blocks Bc

i comprise the corresponding
conjugate fields.

What has been done in the literature so far and will also be done in chapter 4, is to use
a diagonal Higgs field with branch cuts. This is equivalent to employing a single-valued
reconstructible or block-reconstructible background, respectively, as we have seen. By
gauge transforming from the T-brane background (3.53) to the diagonal background
(3.54) it can be confirmed that the matter curves which are related by a monodromy
have to be identified. Even the geometrical interpretation that several matter curves
come from one brane intersecting itself has been validated by reinterpreting a brane
configuration which is deformed by a reconstructible holomorphic background as a
single recombined brane. The above discussion shows how T-brane configurations have
been encountered implicitly in the literature. But besides giving new insights and a
more elegant way to introduce the concept of monodromy, they open up many new
options for model building once the assumption of block-reconstructability is dropped.
In chapter 4 the important underlying assumption is that the diagonal Higgs field at
hand is obtained from a reconstructible background via the procedure mentioned above,
and therefore full information about the physics can be obtained by knowing only the
spectral equation and the monodromy group. In chapter 6 in contrast, the full variety
of single-valued Higgs fields breaking E8 to SU(5) will be explored.
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3.6. Local, semilocal and global models

There exists a hierarchy in the dimensionalities of the models that one can examine
within an F-theory compactification. A global model consists of an explicit Weierstraß
model that specifies the CY fourfold Y4 and with it the embedding of S in B3. In
a semilocal model the concern is with an eight-dimensional theory which is localized
on S. To describe the local neighborhood of S, and in particular the fluxes turned
on on S, a useful scheme is the spectral cover. Finally, a local model is a truly four-
dimensional theory, in which the physics takes place on several, or in the extreme case,
one point of S. In this chapter I will depict the advantages and drawbacks of the global,
semilocal and local approach and clarify the relations between them, for example what
assumptions can and must be made in order not to obviate the possibility of a more
global embedding.

Decoupling Limit Of Gravity

For questions concerning particle physics gravity starts to play a role at the Planck
scale, and it is therefore a reasonable step to analyze vacua that allow for a limit where
gravity can be decoupled from the rest of particle physics. The idea is to first find
a model which reproduces the MSSM and care about gravity afterwards. The four-
dimensional Planck and GUT scales depend on the volumes of B3 and the GUT surface
S as follows:

M2
Pl ∝ Vol(B) , M4

GUT ∝ Vol−1(S) . (3.60)

The decoupling limit of gravity corresponds to letting the volume of B3 go to infinity
whereas the volume of S stays finite. This is the same as to require that the ratio
of the volumes goes to zero, from which follows that S must be a del Pezzo surface
[39]. This has the important consequence that the only option for GUT breaking
is via hypercharge flux: VEVs for adjoint valued chiral superfields cannot be used
because they determine the position of S in B3, but since S is decoupled there are
no corresponding zero modes. In order to use Wilson lines to break SU(5) a non-
trivial fundamental group π1(S) is required. Del Pezzo surfaces, however, are simply
connected.

Hypercharge Flux And Chiral Spectrum

The hypercharge flux takes values in the U(1)Y subgroup of SU(5) and therefore breaks
the GUT group to the commutant of U(1)Y in SU(5), which is exactly the SM gauge
group SU(3)C × SU(2)L × U(1)Y . The Chern–Simons coupling

∫R3,1×S

C4 ∧ Tr(FR3,1 ∧ FS) , (3.61)

where C4 is the RR-four-form potential and the F ’s denote the field strengths, leads
to a mass for the U(1)Y boson via the Stückelberg mechanism. This can be evaded
by requiring that the two-cycles in S along which the hypercharge flux is switched on
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lift to homologically trivial two-cycles in the CY space [40]. To make sure that this
constraint is fulfilled one would need a global model with an explicit embedding of S
in a CY fourfold.

A matter field ψ which localizes along a curve Σ obeys the six-dimensional Dirac
equation D/ψ = (D/4 +D/Σ)ψ = 0. Since in the four-dimensional theory a Kaluza–Klein
mass term is induced by ψ̄D/Σψ, the massless modes are the zero modes of D/Σ. The
chiral spectrum is therefore determined by an index theorem involving the fluxes on
the seven-branes wrapping the divisors Ga and Gb that intersect to form the matter
curve Σ. Denoting by qa and qb the charges of a field under the respective groups, the
difference between the number of modes in the representation R and the conjugate
representation R̄ is given by

nR − nR̄ = qa

∫

Σ

Fa

2π
+ qb

∫

Σ

Fb

2π
. (3.62)

Here, Fa and Fb denote the field strengths6. The models presented in chapter 4 are
based on a point of E8 enhancement, which finds itself where the four transverse U(1)
branes intersect the GUT stack. Whether or not these branes are really distinct objects
depends on the monodromy group of the Higgs field, since it can lead to the identifica-
tion of some branes. Hence, there are two kinds of fluxes which determine the chiralities
of the curves: One of them is turned on along the U(1)’s and can only influence the
chiralities of full GUT multiplets, whereas the other flux is the hypercharge flux, which
splits the SU(5) multiplets. Since the latter is confined to SGUT, one can explicitly
calculate how it restricts to the different matter curves within a semilocal framework.
Denoting the restrictions of the U(1) fluxes and the hypercharge flux to a curve by the
integers M and NY , according to (3.62) the 5 curves get split in the following way:

n(3,1)−1/3
− n(3̄,1)+1/3

=M5 ,

n(1,2)+1/2
− n(1,2)−1/2

=M5 +NY ,
(3.63)

and for the 10 curves we have

n(3,2)+1/6
− n(3̄,2)−1/6

=M10 ,

n(3̄,1)−2/3
− n(3,1)+2/3

=M10 −NY ,

n(1,1)+1
− n(1,1)−1

=M10 +NY .

(3.64)

The U(1) fluxes are turned on along the branes which intersect SGUT transversally and
thus cannot even be determined in the semilocal approach. The M ’s can therefore be
treated as free parameters up to the constraint

∑
M10 +

∑
M5 = 0 . (3.65)

This equation follows from the tracelessness condition for the four U(1) fluxes,∑
i FU(1)i = 0, and implies anomaly cancellation (see also [41]). For the hypercharge

6The groups are restricted to be Abelian because of the implicit trace in (3.62).
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flux, as anticipated earlier, there are more constraints because one must prevent it from
receiving a Stückelberg mass [36]:

FY · c1 = 0 , FY · η = 0 . (3.66)

The first Chern class of the tangent bundle of S is denoted by c1 and η = 6c1 − t, with
−t being the first Chern class of the normal bundle of S.

Semilocal Framework

Essentially following [42], the aim of this section is to calculate explicitly the flux
restrictions N to the different curves. For this one needs to know the homology classes
of the curves, which in turn can be calculated using the spectral cover approach [13].

The spectral surface is given by the constraint

C10 = b0U
5 + b2V

2U3 + b3V
3U2 + b4V

4U + b5V
5 = 0 , (3.67)

where U and V are homogeneous coordinates of the projective threefold

X = P(OSGUT
⊕KSGUT

) , (3.68)

where OSGUT
and KSGUT

denote the trivial and the canonical bundle on SGUT. The
monodromy is encoded in the factorization of C10 as the number of U(1)’s that remain
independent is in general one less than the number of factors of C10. To visualize
how this comes about one can picture all 10 curves to be one single 10 curve on the
five-sheeted cover. The branch cuts connect the different layers causing the cover to
break into slices, each of which is associated to a factor of C10 and corresponds to one
10 curve. Concretely, one can locally define a parameter s = U/V and the five roots
of (3.67), written as a polynomial in s, will then correspond to the five ti. In order to
realize the Z2 monodromy, a factorization into four parts is needed, where the curves
101 and 102 lift to a single curve on the spectral cover:

C10 =
(
a1V

2 + a2V U + a3U
2
)
(a4V + a7U) (a5V + a8U) (a6V + a9U) = 0 . (3.69)

It is possible to solve for the ai in terms of the bk and to calculate their homology
classes. Note that the CY condition for Y4 implies that the bk are sections of line
bundles with first Chern class η − kc1, where

η = 6c1 − t , t = −c1(N) , c1 = c1(SGUT) (3.70)

and N denotes the normal bundle of SGUT. Since there are six bk but nine ai, three
bundles remain unspecified. They are χ7, χ8 and χ9, corresponding to a7, a8 and a9.

The constraint one gets from

b1 ∼ t1 + t2 + t3 + t4 + t5 = 0 (3.71)

implies

a2a7a8a9 + a3a6a7a8 + a3a5a7a9 + a3a4a8a9 = 0 (3.72)
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Section c1(Bundle)
a1 η − 2c1 − χ̃
a2 η − c1 − χ̃
a3 η − χ̃
a4 −c1 + χ7

a5 −c1 + χ8

a6 −c1 + χ9

a7 χ7

a8 χ8

a9 χ9

Table 3.2.: The first Chern classes of the line bundles corresponding to the ai.

and is nontrivial. It can be solved by the ansatz

a2 = −c (a6a7a8 + a5a7a9 + a4a8a9) ,

a3 = c a7a8a9
(3.73)

without inducing non-Kodaira singularities, as was shown in [42]. This, however, does
not need to be the only solution and might thus not constitute the most general one.
The homology class [c] introduced above is given by

[c] = η − 2χ̃ , (3.74)

where χ̃ = χ7+χ8+χ9. Table 3.2 summarizes the Chern classes of the various bundles
for all ai.

The next step is to determine the matter curves in terms of the ai. From (3.47) we
know that the 10 curves are given by ti = 0, which implies that b5 = t1t2t3t4t5 = 0.
This, in turn, is the coefficient of V 5 and thus must also be equal to a1a4a5a6, as one
can see from (3.69). Therefore, the 10 curves are given by ai = 0, where i = 1, 4, 5, 6.

In order to determine the equations for the 5 curves, one must plug (3.73) into the
defining polynomial for the 5 curves (3.26). This gives

P5 = (a5a7 + a4a8) (a6a7 + a4a9) (a6a8 + a5a9)

× (a6a7a8 + a5a7a9 + a4a8a9)

× (a1 − ca5a6a7 − ca4a6a8)

× (a1 − ca5a6a7 − ca4a5a9)

× (a1 − ca4a6a8 − ca4a5a9) ,

(3.75)

and we arrive at table 3.3, which displays the curves with their SU(5)⊥ charges, their
defining equations in terms of the ai and the resulting homology classes.

After imposing the monodromy, only three independent U(1) fluxes remain. If one
denotes their restrictions to the curves 51, 52 and 53 byM−t1−t3 =M51

,M−t1−t4 =M52

and M−t1−t5 = M53
, it becomes apparent that the U(1) flux restriction to 101 can be

expressed as
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Curve SU(5)⊥ charge Equation Homology
5Hu −2t1 a6a7a8 + a5a7a9 + a4a8a9 −c1 + χ̃
51 −t1 − t3 a1 − ca4a6a8 − ca4a5a9 η − 2c1 − χ̃
52 −t1 − t4 a1 − ca5a6a7 − ca4a5a9 η − 2c1 − χ̃
53 −t1 − t5 a1 − ca5a6a7 − ca4a6a8 η − 2c1 − χ̃
54 −t3 − t4 a5a7 + a4a8 −c1 + χ7 + χ8

55 −t3 − t5 a6a7 + a4a9 −c1 + χ7 + χ9

56 −t4 − t5 a6a8 + a5a9 −c1 + χ8 + χ9

101 t1 a1 η − 2c1 − χ̃
102 t3 a4 −c1 + χ7

103 t4 a5 −c1 + χ8

104 t5 a6 −c1 + χ9

Table 3.3.: Matter curves and their homology classes.

M101
=Mt1 =M−(−3t1+2t1) =M−(−3t1−t3−t4−t5) =M−(−t1−t3−t1−t4−t1−t5)

= −(M51
+M52

+M53
) .

(3.76)

In addition to (3.65), this leads to the following constraint on the M ’s:

M101
= −(M51

+M52
+M53

) . (3.77)

It is interesting to note that (3.66) yields

∑

5

N =
∑

10

N = 0 . (3.78)

The fields in the representations n(1,2)+1/2
, n(3̄,1)−2/3

and n(1,1)+1
therefore have no net

chirality.

From the column of table 3.3 that displays the homology classes one sees that the hy-
percharge restrictions to the curves are determined solely by N7, N8 and N9. Table 3.4
summarizes the final values for NY and M , which will be needed for the calculation of
the spectra that is to be performed in the next chapter.

It is important to note that there are strong correlations between the flux restrictions.
For example, a split of the up-type Higgs curve inevitably leads to a split of the 101

curve.

The Point Of E8

Working within the local framework, one can either build a model where the various
interactions take place at different locations on the manifold or have all matter curves
meet at one single point. This point is characterized by the vanishing of all ti and thus
all bk = 0 except b0. The singularity is then enhanced to E8, as can be seen from (3.48),
which becomes y2 = x3 + w5. This point can in principle give rise to all matter and
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NY M

10 Curves

101 −Ñ −(M51
+M52

+M53
)

102 N7 M102

103 N8 M103

104 N9 M104

5 Curves

5Hu Ñ M5Hu

51 −Ñ M51

52 −Ñ M52

53 −Ñ M53

54 N7 +N8 M54

55 N7 +N9 M55

56 N8 +N9 M56

Table 3.4.: Restrictions of hypercharge and U(1) fluxes to the curves,
Ñ = N7 +N8 +N9.

interactions of the MSSM [20]. Apart from the phenomenological advantages of this
setup there are some practical benefits: The allowed interactions are determined purely
by the quantum numbers, i.e. the ti, and there are no geometric suppression effects due
to contingent separations of Yukawa points. This makes this setup very predictive. A
selection of works that have so far analyzed it is given by [5, 6, 11, 35, 36, 43–45].

Let me summarize the assumptions that are made when considering just a point: Inter
alia one has the freedom to choose the monodromy group as well as the zero modes
on the matter curves by hand. Furthermore, arbitrary VEVs can be given to sin-
glets, which is needed to generate mass textures. The mass terms that include singlet
insertions are of the form

1a · · ·1b5Hu10M10M , 1a · · ·1b5Hd
5M10M . (3.79)

Since all interactions take place at the same point in the compact space, it is assumed
that all coupling that are allowed by gauge symmetry are present with order-one co-
efficients. Last but not least, a globally trivial but locally nontrivial hypercharge flux
is presumed which achieves doublet-triplet splitting for the up- and down-type Higgses
without introducing exotics on other curves.

In the following chapter local F-theory models at the point of E8 are investigated which
aim at reproducing the superpotential of the MSSM. In chapter 5 I will present the
results of the efforts to take into account constraints from semilocal consistency, which
is the first step towards a global completion. The spectral cover results obtained above
will be applied to the local models and I will discuss the implications for the local
construction.
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4. Local F-theory models with a

stable proton

As pointed out in chapter 2, the superpotential gives rise to the quark and lepton
masses but may also contain potentially dangerous terms that cause fast proton decay.
It is interesting to see whether the ingredients available at a point of the compact space
alone are sufficient to realize a model that allows for proton stability and can reproduce
the correct quark and lepton masses. We have seen that a successful way to prohibit
most of the terms that violate B and L is to impose matter parity. Therefore, the aim
will be to find an SU(5) GUT model based on a point of E8 symmetry enhancement,
i.e. an assignment of fields to the matter curves displayed in (3.47), with the following
properties:

• A matter parity PM ⊂ SU(5)⊥,

• a heavy top quark, i.e. a tree-level rank-one up-type Yukawa coupling involving
the third generation 10 curve,

• absence of dimension-five proton decay via the W 1 operator, and

• masses for all quarks and leptons after switching on singlet VEVs.

As argued at the end of chapter 3, one must assume that all operators which are
allowed by gauge symmetry and matter parity are present with order-one coefficients.
This means that the operators W 3 and W 1 must be absent or generated at very high
order with singlet insertions. We will later see that when splitting the Higgs curves,
some of the 10 multiplets will be split as well. So one could wonder whether it is
possible that the W 1 operator is present at the SU(5) level while the split is such that
there are no dangerous terms for the SM multiplets. To see that this is not possible,
let me write out W 1 in terms of SM representations:

W 1
ijkl10

i
M10

j
M10k

M5l
M = W 1

ijkle
iujQkLl +W 1

ijkle
iujukdl

+W 1
ijklu

iQjQkdl +W 1
ijklQ

iQjQkLl .
(4.1)

The first term, for example, is only absent for all i, j and k when the 5l
M is split such

that there is no net-chiral Ll. For the second term, however, the same argument applies
for dl. Since this reasoning works for all l, and because of the requirement that at least
the sum of the chiralities over all l is minus three for both L and d, the conclusion is
that W 1 must be absent at the SU(5) level.

The next section outlines the steps that lead to the two local models presented in
this work. To specify a concrete model, one has to choose the monodromy, define
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4.1 MATTER PARITY AND MONODROMY

the matter parity PM , assign matter and Higgs fields to the curves and select a set
of singlets that get a VEV. It will turn out that the number of options is drastically
reduced by the few phenomenological requirements above. I will start with general
arguments that must be valid in the local as well as in the semilocal framework by
showing in section 4.1 that there are only two possible definitions of matter parity
and essentially one choice of monodromy group. In the subsequent sections I will first
consider Case I, demonstrating in section 4.2.1 that the way to assign matter fields to
curves is very restricted when requiring the absence of proton decay. In section 4.2.2
the possibilities to choose the down-type Higgs curve will be discussed and we will
see that this leads in fact to a unique local model for Case I, whose phenomenology
will be examined in section 4.2.3. Afterwards, in section 4.3, a similar analysis will be
performed for Case II, where there is the possibility to enlarge the monodromy group
without introducing qualitatively new features.

4.1. Matter parity and monodromy

I would first like to motivate the choice of the monodromy group and the definition of
matter parity. As argued in section 3.5.3, at least a Z2 monodromy is required to get
a tree-level up-type Yukawa coupling leading to a heavy top quark. The matter parity
emerges from SU(5)⊥ and therefore must be defined in terms of the ti. Each ti can
either contribute a factor of +1 or −1 and thus, a formula for PM can be written in full
generality as PM = (−1)α1t1+α2t2+α3t3+α4t4+α5t5 , where αi ∈ {1, 2}. Note that the up-
type Yukawa coupling will always be allowed by matter parity, because the requirement
of gauge invariance alone leads to PM(up-type Yukawa coupling) = (−1)0 since the t’s
cancel, and this conclusion persists no matter how many singlets are inserted.

The requirement that the down-type Yukawa couplings 10M5M5Hd
should be allowed

does give a constraint on the matter parity definition though: Given that the 10M

contributes a factor of ti and the 5’s account for tj + tk and tl + tm, all of which have
a positive sign, this operator can, in contrast to the up-type Yukawa coupling, only be
gauge invariant if all t’s are different. Remember that the sum t1 + t2 + t3 + t4 + t5
is zero according to (3.46). At the same time the desired down-type Yukawa coupling
must have matter parity +1 to be permitted, which can only be achieved provided the
number of t’s with a prefactor of two in the matter parity definition is odd. Note that
this fact remains true with any number of singlet insertions because the singlets all
have charge assignments of the form ti − tj and thus do not change the number of t’s
in the operator. When setting all five α’s to two, there will not be a single field left
that could be identified with matter since matter must have PM = −1. One option is
to set only a single α to two, which I chose to be α5:

Case I : PM = (−1)t1+t2+t3+t4+2t5 . (4.2)

This model will be analyzed in section 4.2. Finally, having three prefactors of two in
the matter parity definition would coerce three generations to come from a single 10M

curve, namely the top curve. I will examine the model corresponding to the matter
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4 LOCAL F-THEORY MODELS WITH A STABLE PROTON

parity

Case II : PM = (−1)t1+t2+2t3+2t4+2t5 (4.3)

in section 4.3.

Now let me come back to the choice of the monodromy group. In Case I, for PM

to be well-defined, t5 must not be related to any other t. So there are only two
options left which maintain the chance of building a model where the three generations
of the standard model emerge from at least two curves. The first one is to enlarge
the monodromy group such that another t lies in the same orbit as t1 and t2 and
the second one is to additionally relate t3 and t4 by a Z2 monodromy. Both ideas
are to be discarded because they are accompanied by the occurrence of the operator
W 1

ijkl10
i
M10

j
M10k

M5l
M , which leads to proton decay. The origin of this issue is that a

gauge invariant W 1 operator also needs a sum over all five distinct t’s, as it is the case
for the down-type Yukawa couplings. More precisely, since the three 10’s in W 1 each
add a t with a prefactor of one, for an allowed W 1 the 5 must provide the remaining
two t’s, in particular a factor of t5 that cannot get in via the 10M ’s. A 5 always has a
charge assignment ti + tj , so for it to have PM = −1 and from the definition of matter
parity it is evident that one of these t’s must in fact be t5. Now the only chance to
avoid W 1 is to not identify one of the odd matter parity 10’s with SM matter. Since
already with the Z2 monodromy there are only three odd parity curves left, it is evident
that the monodromy group must not be enlarged any further.

In Case II t3, t4 and t5 appear symmetrically in the definition of PM . Here it is possible
to mutually relate them by an arbitrary monodromy, but we will see later that this
does not affect the phenomenology of the resulting model and therefore one can as well
leave it at the monodromy relating t1 and t2.

4.2. Matter parity Case I

4.2.1. Matter curves and singlet VEVs

Having fixed the monodromy group and a formula for matter parity,

PM = (−1)t1+t2+t3+t4+2t5 ,

I proceed with the discussion which fields should be assigned to the different curves.
The aim of this selection is to prevent the appearance of baryon and lepton number
violating operators. The curves, their charges and matter parities are collected in
table 4.1. As already mentioned in the previous section, all dimension-three, four and
five baryon and lepton number violating operators apart from W 3

ij5
i
M5

j
M5Hu5Hu and

W 1
ijkl10

i
M10

j
M10k

M5l
M are forbidden by matter parity. Since the two up-type Higgs

curves in W 3 contribute a factor −2t1 − 2t2 to the operator, W 3 is absent at tree level
because these charges cannot be canceled by adding the t’s for the other two curves.
On the other hand, W 1 will appear at tree level, as argued above, unless some of the
odd matter parity curves are declared to not carry SM matter.
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4.2 MATTER PARITY CASE I

From (4.4), which lists all gauge invariant combinations involving the 10’s and 5’s with
PM = −1, one can see that it is possible to evade W 1 when not assigning SM fields to
the curves 102 and 55, because if these two curves do not carry SM fields, there is no
operator left that contains SM fields only1.

10110110256

10110110355

10110210353

(4.4)

Hence, the 10 and 5 curves carrying SM matter are fixed to be 101 and 103 as well
as 53 and 56, respectively, because one can see from table 4.1 that these are the only
remaining fields with odd matter parity. Because of this three fields must emerge from
two curves.

Addressing the even matter parity 5 curves, there are four possibilities to assign the
down-type Higgs to one of the Higgs-like curves. The choice must be made such that
after turning on VEVs for selected singlets the down quarks become massive without
reintroducing operators that lead to proton decay. Odd matter parity singlets must not
receive a VEV because this would break matter parity and reintroduce the successfully
eliminated baryon and lepton number violating operators. W 1 will be generated imme-
diately when VEVs are given to the singlets 11 or 14 because the matter 10’s have the
charges t1, t2 and t4 and the matter 5’s have the charges {t1 + t5, t2 + t5} and t4 + t5.
11 and 14 have the charges ±{t1 − t3, t2 − t3} and ±(t3 − t4) and thus both contain
a t3, which is needed for W 1 to be gauge invariant. Therefore, they must not get a
VEV. Summing up, the aim is to select a down-type Higgs curve that gives masses to
the down-type quarks using only VEVs for the singlets 12 and 17. The assignment of
fields to the matter curves is summarized in the last column of table 4.1.

4.2.2. Higgs curves

In this section we will see that, when working in the purely local framework, requiring
no proton decay and down-type masses at the same time singles out a unique model for
Case I. The main assumption is that the chiralities of the curves can be chosen freely
while simultaneously the Higgs curves can be split correctly, that is, only the Higgs
doublets remain light. In particular, it is assumed that all 10 and 5 curves apart from
101, 103, 5Hu , 5Hd

, 53 and 56 appear as vector-like pairs and can be given a high-scale
mass. In chapter 5 this point will be analyzed in more detail.

The previous section tells us that, since the SM matter curves are fixed, the next
important question is to which of the four possible even matter parity 5 curves 5Hu ,
51, 52 and 54 the down-type Higgs field is assigned. Table 4.2 lists all gauge invariant
tree-level down-type Yukawa couplings for the different choices of the down-type Higgs
curve.

1One could also pick 103 and 56 instead but this choice just amounts to a relabeling.
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Charge Matter Parity Assigned Fields

10 Curves

101 {t1, t2} − 10top, possibly more
102 t3 − no SM matter
103 t4 − possible SM matter
104 t5 + no SM matter

5 Curves

5Hu −t1 − t2 + up-type Higgs
51 {−t1 − t3,−t2 − t3} + Higgs-like
52 {−t1 − t4,−t2 − t4} + Higgs-like
53 {−t1 − t5,−t2 − t5} − possible SM matter
54 −t3 − t4 + Higgs-like
55 −t3 − t5 − no SM matter
56 −t4 − t5 − possible SM matter

Singlets

11 ±{t1 − t3, t2 − t3} + no VEV
12 ±{t1 − t4, t2 − t4} + VEV possible
13 ±{t1 − t5, t2 − t5} − no VEV
14 ±(t3 − t4) + no VEV
15 ±(t3 − t5) − no VEV
16 ±(t4 − t5) − no VEV
17 {t1 − t2, t2 − t1} + VEV possible

Table 4.1.: List of curves, their charges and their matter parity values with the
field assignment for Case I.

Down-type Higgs curve Gauge invariant couplings

5Hu —

51 5Hd
10156

5Hd
10353

52 —

54 5Hd
10153

Table 4.2.: Gauge invariant down-type Yukawa terms for all possible choices of
down-type Higgs curves for Case I.
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4.2 MATTER PARITY CASE I

Taking the down-type Higgs curve to be 51 leads to a rank-two Yukawa matrix at
tree level resulting in two heavy and one light generation, which is phenomenologically
problematic. One can check that a particular split of the curves reduces the rank of
the matrix to one or zero, but since with the spectral cover formalism it is not possible
to realize the 51 as the down-type Higgs curve anyway, as we will see later, I dismiss
this option here and relegate more details to appendix A.1.

Next, the choice of 5Hu or 52 with charges {t1 + t2} and {t1 + t4, t2 + t4} is considered.
It is easy to see that in both cases there cannot be any down-type masses because the
matter 10’s, 101 and 103, have charges {t1, t2} and t4, while the matter 5’s, 53 and 56,
have charges {t1 + t5, t2 + t5} and t4 + t5, and the only two singlets that one is allowed
to give a VEV to, as discussed in the previous section, are 12 and 17 with charges
±{t1 − t4, t2 − t4} and {t1 − t2, t2 − t1}. For the down-type mass term to be gauge
invariant, a sum over all five distinct t’s is needed and with this choice it is obvious
that the sum will always lack a t3 factor. Thus, the possibilities to select 5Hu or 52 as
the down-type Higgs curve are excluded. Note that this conclusion holds even if the
curves are eventually split.

This ultimately fixes the down-type Higgs curve to

5Hd
= 54 , (4.5)

which is favored anyway because it leads to a rank-one down-type Yukawa matrix at
tree level. Demanding that the quark which gets the large mass is the bottom quark
then amounts to assigning the bottom quark generation to the curve 53 and the light
generations to the curve 56:

5bottom = 53 , 5down/strange = 56 . (4.6)

Recapitulating, the requirements of no proton decay, a heavy top quark and a down-
type Yukawa matrix which has rank zero or one have lead to a unique model. The next
step is to explore its phenomenology.

4.2.3. Masses and mixings

Let us now examine the Yukawa textures and the CKM matrix in the model that was
just specified to see whether reasonable mass hierarchies and mixings in the quark
sector can be achieved.

Choosing 101 to carry only the top generation and 103 to accommodate the light
generations, the up-type Yukawa matrix including insertions of the singlets 12 and 17

reads, at leading order,

Y u
ij ∼



ǫ2 ǫ2 ǫ
ǫ2 ǫ2 ǫ
ǫ ǫ 1


 , (4.7)
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where

ǫ =
〈X2〉
M∗

. (4.8)

Here, 〈X2〉 is the VEV for the field assigned to the curve 12, which is suppressed by
the winding scale M∗. This scale has been shown to coincide which the GUT scale for
local models [46]. The VEV for 17 will only appear at higher order and can just as
well be completely omitted.

It is important to note that there are order-one prefactors in front of each entry, which
depend on the geometry of the different curves and also come from integrating out
heavy states in the case of elements with singlet insertions. Within this framework
these prefactors cannot be determined. Nevertheless, it is possible to see if the masses
and mixings show acceptable patterns.

For the down-type Yukawa matrix the result is similar:

Y d
ij ∼



ǫ2 ǫ2 ǫ
ǫ2 ǫ2 ǫ
ǫ ǫ 1


 . (4.9)

Since both matrices are approximately diagonal, I used the simplified formulae for the
mixing angles in the CKM matrix [47]

sCKM
ij ≃ sdij − suij , (4.10)

where

s
u/d
12 =

Y
u/d
12

Y
u/d
22

, s
u/d
13 =

Y
u/d
13

Y
u/d
33

, s
u/d
23 =

Y
u/d
23

Y
u/d
33

, (4.11)

in order to arrive at

VCKM ∼



1 1 ǫ
1 1 ǫ
ǫ ǫ 1


 . (4.12)

These results show that in this model, where the Yukawa matrices and the CKM matrix
contain only a single parameter 〈X2〉, a mass can be given to all generations and mixing
is achieved. Neither the Yukawa matrices nor the CKM matrix match the SM data
very well, but this was not expected because in the setup at hand three generations
come from only two curves.

4.3. Matter parity Case II

In this section I present an analysis of the matter parity Case II along the lines of the
previous section: I will first clarify the possible field assignment and then discuss in
section 4.3.2 the down-type Higgs sector and the resulting Yukawa textures.
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The matter parity in Case II is defined as

PM = (−1)t1+t2+2t3+2t4+2t5 .

It will turn out that one generally has more freedom in this model because the SU(5)⊥
charges split into two decoupled groups,

teven = {t3, t4, t5} and todd = {t1, t2} (4.13)

such that the possible Higgs 5 curves involve two teven’s and the matter 5 curves involve
one teven and one todd. Furthermore, the positive matter parity singlets do not mix teven
and todd.

As in Case I, a basically unique model will emerge. There is only one matter 10 curve,
and both Higgses are unique (up to a relabeling of the teven). The only freedom is
in the choice of matter 5 curves: One can choose one, two or three curves for the
three generations, or alternatively identify some of these by an extended monodromy.
However, this will not give qualitatively new features.

4.3.1. Matter assignment

In the case at hand the different curves have even or odd matter parity as displayed
in table 4.3. Since there is only one odd matter parity 10 curve in Case II, all three
generations of SM fields that belong to the 10 representation have to be assigned to
101. Note, however, that one can choose the matter in the 5 representation to emerge
from one, two or three 5 curves.

Concerning the W 1 operator, the situation has improved compared to Case I: Using
teven and todd as defined above, the operator 10M10M10M5M has the charge 4todd+teven.
Therefore, with this choice of matter parity and under the assumption that VEVs are
given only to even matter parity singlets, W 1 cannot be generated regardless of which
and how many singlets are inserted. This statement is also completely independent of
the assignment of fields to the curves, which is only constrained by the matter parity
and shown in table 4.3.

4.3.2. Higgs assignment and flavor

Since there is only one 10 matter curve, there is only one up-type Yukawa coupling,
5Hu101101, which at tree level leads to the Yukawa matrix

Y u
ij =



0 0 0
0 0 0
0 0 1


 . (4.14)

It is possible to get singlet contributions from e.g. the VEV of 17, or various higher
powers of other singlet VEVs. The generic form of the Yukawa matrix is then

Y u
ij ∼



ǫ ǫ ǫ
ǫ ǫ ǫ
ǫ ǫ 1


 . (4.15)
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Charge Matter Parity Assigned Fields

10 Curves

101 {t1, t2} − all families
102 t3 + no SM matter
103 t4 + no SM matter
104 t5 + no SM matter

5 Curves

5Hu −t1 − t2 + up-type Higgs
51 {−t1 − t3,−t2 − t3} − possible SM matter
52 {−t1 − t4,−t2 − t4} − possible SM matter
53 {−t1 − t5,−t2 − t5} − possible SM matter
54 −t3 − t4 + Higgs-like
55 −t3 − t5 + Higgs-like
56 −t4 − t5 + Higgs-like

Singlets

11 ±{t1 − t3, t2 − t3} − no VEV
12 ±{t1 − t4, t2 − t4} − no VEV
13 ±{t1 − t5, t2 − t5} − no VEV
14 ±(t3 − t4) + VEV possible
15 ±(t3 − t5) + VEV possible
16 ±(t4 − t5) + VEV possible
17 {t1 − t2, t2 − t1} + VEV possible

Table 4.3.: List of curves, their charges and their matter parity values with the
field assignment for Case II.

Again, the ǫ’s involve order-one coefficients.

Turning to the down-type Yukawa couplings, there are four Higgs-like 5 curves. If the
down-type Higgs is assigned to the same curve as the up-type Higgs, no down-type
masses will be generated at any level, as can be seen from the charges. The reason
for the absence is the same as for that of the W 1 operator: The coupling 10M5M5Hu

involves 4todd + teven which, as already stated, can never be made gauge invariant
by singlet insertions. All other choices for the down-type Higgs curve are equivalent,
given that this model is invariant under permutations of t3, t4 and t5 and that the three
remaining Higgs-like curves and possible 5 matter curves only involve these charges.
So the choice can be made as 5Hd

= 54. In order to have a tree-level coupling of the
101 curve to any down-type quark, one has to assign matter to the curve 53. It is
also possible to start with a down-type Yukawa matrix of rank zero at tree level and
generate all masses through singlet insertions. The allowed couplings to lowest order in
the singlets between the down-type Higgs curve and the candidate SM matter 5 curves
are:

101535Hd
, 101515Hd

15 , 101515Hd
1416 , 101525Hd

16 , 101525Hd
1415 . (4.16)
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Depending on which singlets get a VEV and how the SM generations are assigned
to the three 5 matter curves, one can arrive at different down-type Yukawa matrices.
Starting with a rank-one matrix at tree level, an option is to assign the bottom quark
generation to 53 and the first and second generation to 51 and 52, respectively. After
15 and 14 received a VEV, the following down-type Yukawa matrix is obtained, where
some entries are generated with only one singlet insertion and others with two:

Y d
ij ∼




ǫ5 ǫ5 ǫ5
ǫ5ǫ4 ǫ5ǫ4 ǫ5ǫ4
0 0 1


 . (4.17)

Switching on VEVs for 15 and 16, all entries involving d and b are generated with only
one singlet insertion:

Y d
ij ∼



ǫ5 ǫ5 ǫ5
ǫ6 ǫ6 ǫ6
0 0 1


 . (4.18)

Of course, there also exists the option to assign both light generations to one curve, in
which case one singlet insertion is sufficient to get all couplings.

If one starts with a rank-zero matrix at tree level, all matter must be assigned to 51

and 52. Choosing 51 to carry the bottom generation and 52 the other generations, a
feasible matrix would be

Y d
ij ∼



ǫ5ǫ4 ǫ5ǫ4 ǫ5ǫ4
ǫ5ǫ4 ǫ5ǫ4 ǫ5ǫ4
ǫ5 ǫ5 ǫ5


 , (4.19)

or the same matrix with ǫ5ǫ4 replaced by ǫ6.

Since the aim of this work is not to present a detailed discussion of flavor, I will now
move on to the question whether the models presented in this section can be realized
in a more global framework.

44



5. Semilocal realization

This chapter is an attempt to extend the local models to semilocal models, which would
be the first step in searching for a global realization. The important improvement of
the semilocal framework, where the whole GUT surface SGUT is considered, is that
the chiral spectrum of a model can be calculated explicitly. I will apply the results
for the flux restrictions to the curves, obtained in section 3.6, to the two local models,
presented in chapter 4, and show that they unfortunately do not have a semilocal
realization. One should, however, keep in mind that the approach used here is not the
most general framework because it does not take into account the explicit form of the
Higgs field but solely relies on the spectral equation. Therefore, it is implicitly based
on reconstructible Higgs fields as introduced in section 3.5.3. In chapter 6 I will say
more about the scope of the alternative approach, that is to not use a diagonal Higgs
field but to employ general holomorphic single-valued Higgs fields as a background.

5.1. Semilocal embedding of Case I

The 10 curves that accommodate SM matter are fixed to be 101 and 103. It must
be required that there are three net 10’s after splitting the curves. Using the results
shown in table 3.4, this leads to the requirements

M101
+M103

= 3 , N7 +N9 = 0 . (5.1)

Furthermore, it is necessary that M101
≥ 1 and M101

+ N8 ≥ 0 to have a heavy top
quark. Similarly, the conditions for the 5 curves read:

M53
+M56

= −3 , N7 = 0 . (5.2)

Hence, also N9 = 0, and the only remaining parameter that can be used to split some
curves is N8.

Let me continue with the other two 10 curves that are not associated with SM matter
and should therefore better have no net chirality. This can be achieved easily by simply
setting

M102
=M104

= 0 . (5.3)

Zero modes from the 55 curve can be evaded by also setting M55
= 0. Thus, it is

manageable to achieve a satisfactory matter sector.
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5.1 SEMILOCAL EMBEDDING OF CASE I

n(3,1)−1/3
− n(3̄,1)+1/3

n(1,2)+1/2
− n(1,2)−1/2

5Hu M5Hu
M5Hu

+N8

51 M51
M51

−N8

52 M52
M52

−N8

54 M54
M54

+N8

Table 5.1.: Chiralities in terms of U(1) and hypercharge flux restrictions for the
Higgs-like 5 curves after imposing the matter sector constraints for
Case I.

I will now turn to the Higgs curves. The chiralities of the Higgs-like 5 curves are
shown in table 5.1 in terms of the U(1) and hypercharge flux restrictions. The M ’s are
constrained by the condition (3.77) which now reads

M5Hu
+M51

+M52
+M54

= 0 . (5.4)

The split of the Higgs-like 5 curves is controlled by the parameter N8, as was already
noted above. The goal is to obtain one down-type Higgs doublet and one up-type Higgs
doublet. This is realized if the down-type Higgs doublet, being located on a 5, has a
chirality of −1, whereas the up-type Higgs doublet has a chirality of +1. Neither the
down-type Higgs nor the up-type Higgs must have a light triplet. Since it is always
assumed that fields which appear in vector-like pairs become massive, the simplest way
to get rid of the triplets would be to set the corresponding M ’s to zero. However, they
might be tolerated if they become heavy with the help of singlet insertions. Giving a
VEV to the singlet 12, there are two allowed couplings between the four 5 curves of
interest:

515412 , (5.5)

5Hu5212 . (5.6)

Hence, one can pairwise decouple a triplet from the 5Hu with an antitriplet from the
52 curve. At the same time, the up-type Higgs doublet must remain. In terms of the
flux restrictions these requirements read

doublets: M5Hu
+N8 + (M52

−N8) = 1 ,

triplets: M5Hu
+M52

= 0 ,
(5.7)

which is a contradiction. Therefore, one generically obtains a spectrum which exhibits
additional exotic fields [36], or no up-type Higgs. Note that this result is independent

of the hypercharge flux, since both the 5Hu and the 52 are split with Ñ .

A loophole would be to choose 52 as the down-type Higgs curve. Then the spectrum is
free of exotics, but the coupling (5.6) constitutes nothing but a µ-term. Furthermore,
as discussed before, the 52 curve has no t3 factor, so there are no down-type masses in
this model. One can nevertheless realize this spectrum with the parameter choice

M5Hu
=M51

=M52
=M54

= 0 , N8 = 1 . (5.8)

The remaining doublets from 51 and 54 can be decoupled by the term (5.5).
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5 SEMILOCAL REALIZATION

(a) Parameter Choice (5.8)

Triplets Doublets

55 0 0
5Hu 0 1
51 0 −1
52 0 −1
54 0 1

(b) Parameter Choice (5.10)

Triplets Doublets

55 0 0
5Hu 0 1
51 1 0
52 1 0
54 −2 −1

Table 5.2.: Two possible splits of the Higgs curves for Case I.

The embedding of the model from section 4.2.2, which has 54 as the down-type Higgs,
fails for a similar argument as in (5.7) because one arrives at the mutually contradicting
constraints

doublets: M54
+N8 + (M51

−N8) = −1 ,

triplets: M54
+M51

= 0 .
(5.9)

An example spectrum one can get using 54 as the down-type Higgs curve is shown in
table 5.1(b) with parameters

M5Hu
= 0 , M51

=M52
= 1 , M54

= −2 , N8 = 1 . (5.10)

The curve 54 has the desired doublet but also two triplets, one of which can be combined
with the triplet of the 51 via the coupling 515412. The other one, however, will remain
light and apart from that there is another unwanted triplet in the 52.

5.2. Semilocal embedding of Case II

Since there is only one 10 curve in this model that can carry SM matter, the require-
ments are

M101
= 3 , N101

= −Ñ = 0 . (5.11)

The first condition is unproblematic because it implies

M51
+M52

+M53
= −3 , (5.12)

which is exactly what is needed since 51, 52 and 53 are the possible matter curves.
Furthermore, Ñ = 0 implies that the matter curves are not split, so again the matter
sector works out reasonably. On the other hand, Ñ = 0 inhibits a split of the up-type
Higgs because NHu = Ñ , see table 3.4. In addition, there is no way of coupling the
up-type Higgs curve to some other even matter parity Higgs curve to make the triplet
heavy, because the coupling has the charges −2todd + 2teven in terms of the notation
introduced in section 4.3.1, which cannot be canceled with even matter parity singlets.
Therefore, neither in Case I nor in Case II it is possible to arrive at a satisfying spectrum
while giving masses to all quarks and leptons.
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5.2 SEMILOCAL EMBEDDING OF CASE II

Note that it is due to the hypercharge flux restrictions to the Higgs-like curves that the
semilocal embedding of the local models fails. This is true in both matter parity cases
and even when allowing for exotics from the matter sector. Hence, it is ultimately the
problem of doublet-triplet splitting which prohibits to extend the models globally.
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6. T-branes

As opposed to the work presented so far, where the Higgs field breaking E8 to SU(5)
was taken to be diagonal, this section deals with general holomorphic Higgs fields. I
will start with a review of how localized matter is calculated in the T-brane framework
following [15] and then motivate why such Higgs fields might be able to improve the
models of chapter 4. Whereas in the original work [15] there are only a few examples
given which show that the spectral equation does not capture all the properties of a
T-brane background, the aim pursued in section 6.2 is to improve this situation towards
concrete rules on what kind of matrices give rise to what kind of matter. I will propose
an approach how to commence such a search starting with a computer-based scan
of Higgs backgrounds. For each matrix the matter content is determined, and as an
organizing principle for a classification of Higgs backgrounds with similar properties,
the Galois group of the spectral equation is calculated in addition. In the end I will
discuss the results and give an outlook on options for potential future analyses.

6.1. Localized matter

Holomorphic Gauge

From now on I will exclusively work in the holomorphic gauge, which makes use of
complexified gauge transformations and is very convenient because the BPS equations
(3.33)-(3.35) collapse to one purely algebraic one. As already mentioned in section 3.5.1,
one can neglect the third BPS equation (3.35) when working with complexified gauge
transformations such that the only concern is with equations (3.33) and (3.34). The
holomorphic gauge is characterized by the vanishing of A0,1. The linearized BPS equa-
tions then read

∂̄a = 0 , (6.1)

∂̄φ = [Φ, a] . (6.2)

Equation (6.1) can be solved by introducing a (0,0)-form ξ such that

a = ∂̄ξ . (6.3)

Note that this solution is only valid for trivial worldvolumes V ⊂ C
2 ⊂ S because on

this patch the ∂̄-operator is exact. As a consequence bulk modes cannot be studied.
The second equation can then be integrated to

φ = [Φ, ξ] + h , (6.4)
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6.1 LOCALIZED MATTER

where h is a holomorphic (2,0)-form. Equation (3.41) implies that under a gauge
transformation

ξ → ξ + χ . (6.5)

Since χ is an element of the complexified Lie algebra gC now, it is possible to set

χ = −ξ . (6.6)

Thus, a can be gauged to zero, from which follows that φ = h according to (6.2),
which means that φ is now a holomorphic (2,0)-form. Keeping a gauge to zero, there is
still freedom to perform gauge transformations with a holomorphic χ. Under these φ
changes by [Φ, χ]: The space of gauge inequivalent modes is given by all holomorphic
matrices modulo those which are commutators with the background Higgs field.

To see how this formalism reproduces the results of section 3.5.2, consider the diagonal
Higgs field

Φ =



λ1

. . .

λn


 . (6.7)

Under a gauge transformation a mode in the i-th row and j-th column of φ shifts as

φ→ φ+ (λi − λj)α , (6.8)

where α is some arbitrary holomorphic function. Inequivalent modes in the direction
i− j can therefore be denoted by

O
Iij

, (6.9)

with O being the ring of holomorphic functions in the two brane worldvolume coordi-
nates x and y and Iij the ideal generated by λi − λj. This shows that it is very easy to
study the existence of localized modes in the holomorphic gauge. For the computation
of the explicit matter wave functions a change to the unitary gauge has to be made,
but for all holomorphic quantities, like the superpotential, these wave functions are not
needed anyway.

Six-Dimensional Matter Fields

As opposed to the diagonal background configurations, which clearly describe intersect-
ing branes, there is no geometric illustration for general T-brane backgrounds known
yet, see however [48]. The exception are the reconstructible backgrounds introduced in
section 3.5.3. Given an arbitrary holomorphic background, it is nevertheless possible
to calculate the corresponding matter spectrum and interactions.

For a background valid in the adjoint of some Lie algebra g,

Φ = g⊗O , (6.10)
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6 T-BRANES

(6.4) can be written as

φ = adΦ(ξ) + h . (6.11)

A mode which is gauge equivalent to zero can therefore be written as

φ = adΦ(χ) . (6.12)

The space of physically distinct modes is then given by

g⊗O
adΦ(g⊗O)

. (6.13)

This is the space of eight-dimensional solutions and thus comprises bulk1 fields as well
as localized modes. One can extract the localized modes by making use of their defining
property: All the gauge invariant data is contained in an arbitrarily small neighborhood
of the matter curve f = 0. This means that the mode should be gauge equivalent to
zero everywhere but on f . Thus, one must have

φ = adΦ

(
η

fm

)
(6.14)

with η ∈ g ⊗ O and m a positive integer2. A mode which can be written in this way
is gauge equivalent to zero away from the matter curve f = 0 but not globally trivial
because η

fm is not defined over all of C2. The transition from the eight- to the six-
dimensional field localized on the curves then amounts to mapping φ to η restricted to
the curve.

Elements of g ⊗ O which are in the kernel of the adjoint action can be added to η
without changing (6.14). Therefore, the space of η’s is given by

g⊗O
ker(adΦ)

. (6.15)

The map to the six-dimensional fields is then

8D → 6D : φ 7→ [η] = η|Σ ∈ g⊗O/〈fm〉
ker(adΦ)

. (6.16)

Taking the residue class [η] is the formal way to restrict to the curve.

6.2. New options for model building

In section 3.5.3 we have seen that the T-brane framework collapses to the intersecting
brane setup for the case of reconstructible Higgs fields, i.e. the whole configuration is
determined by the spectral equation (3.49). If, however, one does not assume block

1Here, bulk refers to the eight-dimensional surface S.
2I will say more on the value of m later.
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reconstructability, a configuration is not fully specified by the eigenvalues. The idea
for future F-theory model building is not to work with reconstructible Higgs fields –
or equivalently with diagonal Higgs fields that have branch cuts –, but to relax the
assumption of reconstructability and employ backgrounds whose spectral equations
do not give full information on the spectrum instead. I will start with two examples
taken from [15] of backgrounds that possess new features. The first example shows
that considering the spectral equation alone can be misleading for one would miss the
existence of localized charged matter, and in the second example the converse happens.

Missing Charged Matter

The background

Φ =



0 x 0
0 0 0
0 0 0


 (6.17)

breaks U(3) to U(1)2. Judging from the spectral equation PΦ(z) = z3, one would
picture three coincident branes where the gauge symmetry is broken nowhere and
therefore expect no localized matter. However, the charged doublet

φ =



0 0 φ+

0 0 φ−
0 0 0


 (6.18)

gives rise to a localized mode:

φ =

(
1
0

)
, η =

(
0
1

)
. (6.19)

Too Much Matter

Also, it can happen that the spectral equation predicts localized matter where there is
none. Both

Φ1 =




0 1 0 0
0 0 1 0
0 x 0 0
0 0 0 0


 (6.20)

and

Φ2 =




0 1 0 0
x 0 x 0
0 0 0 0
0 0 0 0


 (6.21)
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6 T-BRANES

have the spectral equation PΦ(z) = z2(z2 − x). The charged localized field would now
be a triplet

φ =




0 0 0 φ1

0 0 0 φ2

0 0 0 φ3

0 0 0 0


 . (6.22)

The gauge freedom allows to set φ1 = φ2 = 0 in the first case and φ1 = 0 in the second
case. The equation

x




0
0
φ3


 =



0 1 0
0 0 1
0 x 0






η1
η2
η3


 (6.23)

has no solution, which means that for the background Φ1 there is no localized matter
at x = 0. The equation

x




0
φ2

φ3


 =



0 1 0
x 0 x
0 0 0






η1
η2
η3


 (6.24)

on the other hand is solved by

φ =



0
1
0


 , η =



1
0
0


 . (6.25)

The two examples show that inferring the matter content of a T-brane configuration
from the spectral equation can be misleading. For potential future model building it
would be great to know what a background must look like to support matter. More
precisely, being interested in SU(5) GUTs, one would like to know under which con-
ditions matter is present in the different 5 and 10 representations. A priori, it is not
clear whether if a spectral equations fails in the prediction of a 5 curve, it will also lead
to a wrong detection of a 10 curve. In view of the discussion in chapter 5 one can hope
that there is no such correlation – and in fact, that will turn out to be the case. There
is a good chance that the homology classes of the different curves at not related, at
least not as calculated by the spectral cover formalism, which might abrogate the no-go
result of chapter 5. It should in principle be possible to realize models with a specific
monodromy group whose spectra differ considerably from the ones of the corresponding
diagonal backgrounds in the sense that for example supernumerary exotic fields can be
disposed of.

6.3. Systematic scan

I performed a computer based analysis of 968 toy models where the background Higgs
fields break E8 to SU(5). The following discussion will make it apparent that the
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properties of a background are hardly visible to the naked eye. A statement in [15]
is that the spectral equation correctly predicts the existence of matter whenever the
monodromy groups is a transitive subgroup of the non-vanishing Jordan block. The
example Too much matter of section 6.2 supports this assumption. This suggests
an analysis of the Galois group of the spectral polynomial as a promising starting point.

The simplest possible background one can consider is one with a 5 × 5 Jordan block
structure:

Φ(5) =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0



. (6.26)

This background, where up to three x’s get inserted in the different slots which are not
filled by one3, will be subject to the scan. One cannot expect to find an unambiguous
relation between the Galois group and the presence of matter, since we already know
that this does not exist. But eventually the complexity of the problem to tell which
backgrounds give rise to which representation is reduced by arranging the Higgs fields
in certain classes, given by the Galois group of the spectral polynomial.

Since an efficient calculation of the Galois group requires a factorization of the char-
acteristic polynomial, for which there exists no pre-assembled algorithm, this step is
very technical and therefore explained in appendix A.2. Given the factorized spectral
polynomial, a few mathematical statements, summarized in appendix A.3, make it
straightforward to calculate the Galois group.

For the toy models at hand the only possible matter curve is a power of x. Hence,
these models are phenomenologically not interesting because they do not possess any
Yukawa interactions, which would require different curves to meet in a point.

6.3.1. Calculation of localized modes

In this section I will show how to make use of the theory introduced in section 6.1 for
practical calculations of localized fields. In the same order the computer-based scan is
performed.

For the 5 and 10 of SU(5) the equations (6.14) read

φ5 = adΦ

(
η5

fm
5

)
and φ10 = adΦ

(
η10

fn
10

)
. (6.27)

The first step is to make use of the gauge freedom to set to zero as many entries of φ5

and φ10 as possible. It is convenient to think of the Higgs field Φ as being embedded

3There are exactly 968 distinct possibilities to do this when taking into account the tracelessness
condition.
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in the adjoint representation of E8 such that under the decomposition

E8 −→ SU(5)× SU(5)⊥

248 −→ (24, 1)⊕ (1, 24)⊕ (10, 5)⊕
(
5, 10

)
⊕

(
10, 5

)
⊕

(
5, 10

)

the nonzero values of Φ reside in the adjoint representation of SU(5)⊥: Φ ∼ (1, 24).
The holomorphic gauge parameter χ is also in the adjoint representation of E8. Writing
the eight-dimensional matter fields φ as a fluctuation around the background as in
(3.36) and using (3.42), one obtains

δφ ∈ 248

= 248⊗ 248|248
⊃ (1, 24)⊗

[
(24, 1)⊕ (1, 24)⊕ (10, 5)⊕

(
5, 10

)
⊕

(
10, 5

)
⊕

(
5, 10

)]
|248

= (1, [24, 24])⊕ (10, 24× 5|5)⊕ · · · ⊕
(
5, 24× 10|1̄0

)
.

(6.28)

It follows that the shift of φ5 and φ10 under a gauge transformation is given by

δφ5 = Φχ5

δφ10 = Φχ10 + χ10ΦT ,
(6.29)

where

χ5 =




χ1

χ2

χ3

χ4

χ5




and χ10 =




0 χ12 χ13 χ14 χ15

−χ12 0 χ23 χ24 χ25

−χ13 −χ23 0 χ34 χ35

−χ14 −χ24 −χ34 0 χ45

−χ15 −χ25 −χ35 −χ45 0




(6.30)

are in the representations 5 and 10 of SU(5)⊥, respectively.

For the right-hand side of (6.27) one must compute the adjoint action of Φ on the
holomorphic quantities η5 and η10. The entries of

η5 =




η1
η2
η3
η4
η5




and η10 =




0 η12 η13 η14 η15
−η12 0 η23 η24 η25
−η13 −η23 0 η34 η35
−η14 −η24 −η34 0 η45
−η15 −η25 −η35 −η45 0




(6.31)

will be determined by solving (6.27).

I solved these equations taking m,n ∈ {1, 2, 3, 4, 5, 6}4 for the matter curves fm
5

= xm

and fn
10

= xn. There are additional requirements on the quality of the solutions that

have to be imposed:
(

η
fm

)
must be singular at x = 0, η must have some non-vanishing

entries at x = 0 and I only want to keep those modes which do not differ by an
element of the kernel of the adjoint map. For the last requirement I checked whether
the difference of two modes is mapped to zero by the adjoint map. If there exists a 5

4No unambiguous new solutions appear at order six, so it seems to be sufficient to take m,n ≤ 6.
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η(at xa) of SU(5) at f = xa and another one η(at xb) at f = xb, I calculated the difference
η(at xb) × xa − η(at xa) × xb. The multiplication by xa and xb makes up for the different
residues taken in (6.16). I would have expected that removing all gauge equivalent
solutions fixes m and n to a certain value so that there is one and only one localized
mode of a given representation located on the curve which is geometrically defined by
x = 0. Indeed, this removes many solutions, but some backgrounds still admit multiple
gauge inequivalent solutions at different powers of x. The question is, whether these are
really distinct modes or if they are to be treated as one and the same. This discussion
will be continued after having looked at the results.

6.3.2. Results

The 968 matrices give rise to eleven different Galois groups:

e× Z2
2 , e× Z4 , e×D4 ,Z2 × S3 , Z2 × Z3 ,

e× Z2 × Z2, e× e× e× Z2 ,

e× e× S3 , e× e× Z3 ,

e× e× e× e× e ,

T .

(6.32)

The transitive groups of order five, permuting all eigenvalues of the Higgs field, are
denoted by T . The tables displaying the matrices, spectral polynomials and localized
modes with their matter curves, belonging to the respective groups, are shown and
explained in appendix A.4. I will start with a group-by-group description of the results.

• None of the e× Z2
2 or e× Z4 backgrounds possesses any localized matter.

• The localized matter in the e×D4 class is always a 5 of SU(5).

• There are exactly three groups of the form e×Grank 4: e×Z2
2, e×Z4 and e×D4.

For all of them a sufficient condition for the absence of localized matter is that the
remainder P e×Grank 4/z is a sum of the z4-, a z2- and z0-term, where the coefficients
of z2 and z0 are allowed to be zero. Stated in another way, a necessary condition
for the presence of a 5 is that P e×Grank 4/z contains a term linear in z.

The polynomials with the Galois groups Z2 × S3 and Z2 × Z3 have features which
distinguish them from all remaining groups:

• There are no polynomials in Z2 × S3 and Z2 × Z3 which are not associated with
at least one matrix that gives rise to matter.

• For n = 1 their matrices often give rise to a 10 but never to a 5, whereas for
larger powers (n = 2, 4) of x 5’s appear. All other groups, exclusive of T , possess
either no matter or a 5 of SU(5).

Just as with any good rule, there is one exception. The last polynomial of the group
e× e× Z3 hints at what might be an underlying pattern:
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• The polynomials in all groups – T is still excluded – apart from the ones inZ2 × S3, Z2 × Z3 and the exception contain at least one factor of z.

In the e×Z2 ×Z2 and e× e× e×Z2 sector, respectively, there is only one polynomial
with brane configurations that support matter.

• Both are exclusively made up of the factors z2 − x and z.

For e× e× S3 and e× e× Z3 one can state that

• no matter is present if there appears a summand −3x or −x3 in P/z2,

and

• they are the only groups with a matrix that has a non-gauge equivalent mode at
n = 6. Except for these two matrices, n = 6 never shows up.

Three polynomials factor completely, thus belonging to the Galois group e×e×e×e×e.
Two of them can give rise to a 5 and one does not.

Finally, for the transitive Galois groups I only listed the results for the non-
reconstructible Higgs fields. There are too many reconstructible matrices to show
them all, so I will only give a summary of the interesting observations:

• n = 1 for all reconstructible Higgs fields that have matter. There exist matrices
which give rise to no matter, a 5, a 10, and both.

Focusing on polynomials, instead of single matrices, one can ask the question whether
the matrices with the same polynomial support the same kind of matter. The statement
in [15] that the spectral equations contained full information in case of reconstructible
backgrounds, suggests this. However,

• 19 out of 39 polynomials in the reconstructible category have matrices leading
to different kinds of matter. To be specific, denoting by ”-”, ”5”, ”10” and ”B”
the absence or presence of a 5, a 10 and both, the combinations which appear
are: -, 10, B, {B,-}, {B,5}, {B,10}, {5,-}, {B,10,-}, {B,10,5}5. The combinations
which do not appear are 5, {10,-}, {10,5}, {B,5,-}, {10,5,-}, {B,10,5,-}. So 9 of
15 possibilities arise.

For the non-reconstructible polynomials n and m are not always equal to one.

• For the 10’s, m = 1, 3 and for the 5’s, n = 1, 2, 3, 5. Whenever a matrix supports
a 5 it also supports a 10.

• There are no non-reconstructible polynomials in the transitive group which do
not have at least one matrix that gives rise to matter.

All in all, the results for the transitive group completely contradict the statement in [15]
that in case of a transitive monodromy group, the spectral polynomial made correct

5To clarify the notation: If four matrices had the same polynomial, two of which gave rise to a 5,
one to a 10 and one to both, the polynomial would belong to the class {B,10,5}.
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predictions. As we have seen, one polynomial is in general associated with matrices
that give rise to different kinds of matter. So this can evidently not be true.

Now let me come back to the discussion at the end of section 6.3.1. The localized
10 modes are never ambiguous whereas the 5’s often are. There are multiple gauge
inequivalent modes at different n in the groups T , e×D4, e× e× Z3, e × e× S3 and
e× e× e× e× e. The question is whether they are one and the same mode or different
ones. I am not able to answer this question but I would like to give one argument for
each side:

Taking a look at the η10’s, it is apparent that the entries which are zero remain zero
when n changes6. The difference between two modes is mostly a combination of a
change of sign somewhere or a multiplication of an entry or a summand of an entry
by x. However, in some cases new summands are added. The upshot is that for each
matrix there is an obvious pattern how η10 is modified. This can be taken as a hint
that the different modes should be treated as one and the same mode. A necessary
condition for this interpretation is that a fictitious Yukawa coupling is not changed
when using one or the other mode. Since Yukawa couplings are calculated by residue
integrals, in which the matter curves appear in the denominator and the entries of the
localized modes show up in the numerator, see [15], this might be fulfilled.

An argument for treating the modes as distinct modes and thus being allowed to assign
different matter fields to them can be formulated as follows: It should not be surprising
that for matrices supporting both a 10 and a 5 m 6= n, because the equations (6.27)
are very different and there is no reason at all why the 10 and the 5 matter curves
should coincide. The matrices at hand, having only x-entries, however, only admit the
option f10 = f5 = x, but this does not imply n = m. Extending this argument to
declaring the 5’s to be different modes is now trivial. If there are for example two
non-gauge equivalent η10’s at n = 1 and n = 2, one could assign the field α to the one
and the field β to the other. In the fictitious Yukawa residue one would then either use
the combination α

x
or β

x2 .

The scan was performed over a set of matrices with a comparatively simple structure.
Nevertheless, it is already quite challenging to calculate quantities – here, the mon-
odromy group – which help to categorize the infinite number of possible matrices and
to put the results into a sufficiently well-arranged form that permits do draw conclu-
sions. The fact that the results do not allow for many concrete statements is inter alia
due to the Galois group depending only on the spectral polynomial. It is thus clearly
not the best variable to look for structures in the landscape of T-brane configurations.
It would be better to find a way to directly analyze the Higgs matrices since this might
lead to waterproof rules. Yet, the examination of the monodromy group is a good
starting point, because the above discussion makes it apparent that there are patterns
to discover even when solely focusing on the spectral equation.

6The 10 in η10 refers to the representation of SU(5)⊥.
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6.4. Towards phenomenologically interesting

models

Concerning phenomenology none of the models examined above is useful, because rea-
listic setups require several distinct matter curves which intersect each other to produce
the needed Yukawa couplings. In this last section I suggest a way how to continue the
research on T-brane configurations that might reproduce the MSSM. The results ob-
tained so far are not strong enough to dictate the course of action for finding viable
backgrounds. Hence, the next reasonable step could be to perform another scan that
has the prerequisites to produce phenomenologically interesting configurations. I pro-
pose the inspection of matrices with a 2⊕ 3 Jordan structure, for example

Φ =




a1,1 1 0 0 0
a2,1 a2,2 0 0 0
0 0 a3,3 1 0
0 0 a4,3 a4,4 1
0 0 a5,3 a5,4 −a1,1 − a2,2 − a3,3 − a4,4



, (6.33)

where ai,j denote holomorphic functions in the seven-brane worldvolume coordinates
x and y. These backgrounds create more complicated configurations, in which, based
on the matter parity definition of Case II, it is possible to distinguish between up-
and down-type Higgs curves, 5 and 10 matter curves and 10 matter curves which
cannot carry SM matter because of the wrong matter parity. It is convenient to look
at Case II because the block-diagonal structure of Φ manifestly reproduces the weight-
classes defined in (4.13).

Denoting the basis vectors of SU(5)⊥ by ei, as in section 3.5.2, the subspaces for the
different curves are spanned by:

5Hu : (e∗1 ∧ e∗2) , 5̄Higgs-like :



e3 ∧ e4
e3 ∧ e5
e4 ∧ e5


 , 5̄M :




e1 ∧ e3
e1 ∧ e4
e1 ∧ e5
e2 ∧ e3
e2 ∧ e4
e2 ∧ e5



, (6.34)

10M :

(
e1
e2

)
, 10Exo. :



e3
e4
e5


 . (6.35)
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Here, the matter parity definition of Case II is used. It is straightforward to calculate
how Φ acts on each of these multiplets:

Φ5Hu
= a1,1 + a2,2 ,

Φ5̄Higgs-like
=



a3,3 + a4,4 1 0

a5,4 a3,3 + a5,5 1
−a5,3 a4,3 a4,4 + a5,5


 ,

Φ5̄M
=




a1,1 + a3,3 1 0 1 0 0
a4,3 a1,1 + a4,4 1 0 1 0
a5,3 a5,4 a1,1 + a5,5 0 0 1
x 0 0 a2,2 + a3,3 1 0
0 x 0 a4,3 a2,2 + a4,4 1
0 0 x a5,3 a5,4 a2,2 + a5,5



,

Φ10M
=

(
a1,1 1
a2,1 a2,2

)
,

Φ10Exo.
=



a3,3 1 0
a4,3 a4,4 1
a5,3 a5,4 −a1,1 − a2,2 − a3,3 − a4,4


 .

(6.36)

The equation for localized modes (6.14) now splits up into five distinct equations,

fRφR = ΦRηR , (6.37)

each of which must be solved independently.

In case the determinants of the above ΦR are not zero, it is particularly easy to deter-
mine the localized modes ηR by using the adjugate matrix to ΦR, which exists even if
ΦR is not invertible. Given the spectral equation for ΦR,

PΦR
(z) = zki − σ1z

ki−1 + ...+ (−1)kiσki , (6.38)

the adjugate matrix is defined by

AR = (−1)ki+1
(
Φki−1

R − σ1Φ
ki−2
R + ...+ (−1)ki−1σki−11) , (6.39)

and fulfills the equation

ARΦR = ΦRAR = det(ΦR)1 . (6.40)

Therefore,

ARφR = ηR (6.41)

and fR = Det ΦR. This technique is for instance employed in [38]. The example
Missing Charged Matter in section 6.2, however, already shows that this does not
work in general.
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Furthermore, the background suggested here has the advantage that the entries in φR

which can be set to zero by a gauge transformation are independent of the entries of
Φ as long as it is of the form (6.33). The result is:

φ5Hu
= {φ} ,

φ5̄Higgs-like
= {0, 0, φ} ,

φ5̄M
= {0, 0, φ1, 0, 0, φ2} ,

φ10M
= {0, φ} ,

φ10Exo.
= {0, 0, φ} .

(6.42)

These can plugged in for the φR in (6.37).
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7. Conclusion and outlook

The aim of this thesis was to study how many properties of particle physics can be
explained within local models. The basic principle is to take advantage of the large
freedom in model building present at the point of E8 in F-theory. The obvious problem
with such a bottom-up approach is that there is no guarantee for the global existence of
such a model, because some assumptions that are made in the four-dimensional theory
of the point may contradict the conditions that must be imposed to attain a consistent
global construction. It is not until the achievement of this objective that we have an
ultraviolet complete description of all fundamental interactions including gravity.

In the search for local SU(5) models at the point of E8 with appealing phenomenological
features, i.e. a stable proton and realistic quark and lepton masses and mixings, exactly
two models were found, which differ in their definition of matter parity. Both of them
feature semi-realistic quark masses and in addition exhibit reasonable mixing patterns
in the CKM matrix. It is possible to extend these models by addressing also neutrinos,
but we only concerned ourselves with the quark sector. The fact that one can define
matter parity in local models is a non-trivial result and a very beneficial one with regard
to the bottom-up idea, because it drastically reduces the number of viable models and
thus renders the local model highly predictive.

In chapter 5 I have shown that a global embedding of the two models unfortunately
already fails in the first step, where constraints from the eight-dimensional theory
taking place on the worldvolume of the GUT seven-brane are included. One can assess
this result in different ways: The most conservative one is to conclude that a potential
string realization of the MSSM needs some nonlocal ingredients. For example, it is
assumed in [11, 43, 44, 49, 50] that the matter parity originates from mechanisms that
can only be described in a global picture. I tried to tackle another route by following
the proposal in [15] of using an eight-dimensional field theory with general holomorphic
Higgs fields as the framework for a local description instead of a diagonal multivalued
Higgs field. As argued in chapter 6, this opens up new possibilities for model building
and raises hope that the local models of chapter 4 might be validated or that better
models might be found. The main point is that this so called T-brane framework, as
opposed to the spectral cover approach, is not based on the spectral equation and could
therefore remedy the correlations between the homology classes of the matter curves,
which cause the problems with the spectra. However, this framework is still very little
developed and there are no rules yet how to make use of it for practical intentions.

In chapter 6 I presented my first steps towards a better understanding of the relation
between the structure of non-diagonal Higgs fields and the kind of matter they support.
I performed a scan over 968 toy models, analyzing Higgs fields that break E8 to SU(5),
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and it is indeed possible to find some regularities when sorting the Higgs matrices by
the Galois group of their spectral polynomials and comparing the spectra they give rise
to. Since the transitive monodromy groups offer such a rich pool of possibilities, one
might want to disentangle them into concrete Galois groups in future studies.

As an unsolved problem, it remains to clarify how to assess the phenomenon of multiple
gauge inequivalent modes which localize on the same geometric curve. It is interesting
so see whether this also happens for the scan over phenomenologically viable back-
grounds which I have proposed. This framework might be more appropriate to answer
the question because the MSSM Yukawa couplings can be calculated explicitly.

An analogous scan, adapted to matter parity Case I, may then be performed in suc-
cession. In the long run one can hope to find simple model building rules which can be
proven by hand and might also be understood from a geometric point of view, that is
in terms of string boundary conditions.

I believe that this approach leads to promising models which can generalize the local
models of chapter 4. One must not forget, however, that what we are really looking for
are at least semilocal models obeying some basic consistency conditions. In this respect,
the statements of [41] have to be taken into account in order to see what constraints
anomaly cancellation puts on the spectra. It is necessary to calculate the homology
classes of the different matter curves and perform analogous calculations to the ones
of the spectral cover approach presented in chapter 5 to obtain the flux restrictions
and the chiral spectrum. This should be possible given the functional dependence of
the matter curves on the brane worldvolume coordinates. This approach seems to be
straightforward, but there is a caveat: As mentioned in section 6.1 and used in (6.3), so
far all calculations have been performed on a local patch V ∈ C2 ∈ S. The formalism
becomes more involved when working on a compact S, but it is outlined in the appendix
of [15] how one must proceed in that case.

It will be exciting to observe the future developments in F-theory model building,
because the fate of local model building does not seem to be definite yet.

64



A. Appendix

A.1. 51 as the down-type Higgs curve

Choosing the curve 51 as the down-type Higgs curve, the gauge invariant couplings are

5Hd
10156 , 5Hd

10353 , (A.1)

which lead to a rank-two down-type Yukawa matrix if the curves are not split and three
generations come from two curves. The question is whether there exists a split such
that the rank is reduced to zero or one.

The relevant couplings in 5Hd
10M5M in terms of SM representations are the ones which

involve the Higgs doublet D:

DeL , DdQ . (A.2)

The chiralities of the fields are given by (3.63),

n(3,1)−1/3
− n(3̄,1)+1/3

=M5 ,

n(1,2)+1/2
− n(1,2)−1/2

=M5 +NY ,
(A.3)

for the 5 curves and (3.64) for the 10 curves:

n(3,2)+1/6
− n(3̄,2)−1/6

=M10 ,

n(3̄,1)−2/3
− n(3,1)+2/3

=M10 −NY ,

n(1,1)+1
− n(1,1)−1

=M10 +NY .

(A.4)

The primary concern is the quark Yukawa matrix. Since the anti-down quark belongs
to the representation n(3̄,1)+1/3

and the down quark belongs to n(3,2)+1/6
, their chiralities

are fully determined by M53
, M56

, M101
and M103

. Overall, three generations must
come from the 5 matter curves and three generations from the 10 matter curves, which
leads to the conditions

M53
+M56

= −3 , M101
+M103

= 3 . (A.5)

Setting one of the M10’s equal to one and the other one equal to two, yields nothing
new. Explicitly, choosing M101

= 1 and M103
= 2 amounts to demanding that a heavy

bottom quark is generated through the coupling 5Hd
10156 and thus setting M56

= −1
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and M53
= −2. In this case the other term, 5Hd

10156, also exists and the matrix has
rank two, which is the old situation.

Therefore, the only new option is given by M101
= 3 and M103

= 0 such that the
remaining relevant coupling is 5Hd

10156. M56
= 0 leads to a rank-zero matrix and

all other values for M56
yield a rank-one matrix. In the rank-one or -zero case it is

additionally necessary that N101
= N103

= 0 in order not to introduce chiralities larger
than three. One can see this from

n(3̄,1)−2/3
− n(3,1)+2/3

=M10 −NY and n(1,1)+1
− n(1,1)−1

=M10 +NY . (A.6)

This solution is a rather trivial one.

It is important to note that nowhere in the above argumentation any use was made
of the homology classes and the corresponding correlations between the different M ’s
and N ’s as determined by the spectral cover approach.

A.2. Polynomial factorization

If the spectral polynomial factorizes, the Galois group will be the product group of the
Galois groups of the different factors. Therefore, the first problem consists in factorizing
the spectral equation. The spectral equations of the Higgs fields examined in the scan
are polynomials of order five in z. The coefficients are polynomials in x of order three,
which themselves have integer coefficients and possess no constant term. The z5 term
always has a prefactor of one.

The factorization must be performed over C[x], i.e. over arbitrary polynomials in x.
Since there exists no built-in command in mathematica to perform such a factorization,
we invented an algorithm which is optimized for the specific properties of the poly-
nomials at hand and is very efficient compared to manually extending mathematica’s
algorithms1. From the partitions of 5 it is apparent that for a factorization of a poly-
nomial of degree five it is sufficient to find a way to pull out polynomials of order one
and two of a polynomial of larger order. If PΦ(z, x) possesses a linear factor it can be

written as (z−ax+bx2+cx3)P (4)
Φ (z, x). As a polynomial in x, Φ(5)(z = ax+bx2+cx3, x)

is a polynomial of order at most 15 and must vanish. The system of linear equations
obtained by setting to zero the coefficients of all powers of x determines the parameters
a, b and c. Having found the linear factor, mathematica can calculate the remaining
polynomial and one can apply the algorithm to find linear factors until all of them are
pulled out.

A factor of order two has the form PΦ(z, x)
(2) = (z2−β1z−β0), where β1 = ax+bx2+cx3

and β0 = dx+ ex2 + fx3. This factor vanishes for

z =
β1
2

±
√
β2
1

4
+ β0 ≡

β1
2

±Q . (A.7)

1The option to use Extension to upgrade the command Factor to use the imaginary unit and
irrational numbers instead of integers only turns out to prolongate the machine time to such an
extent that the program would never terminate.
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Order

�
�
��

H
H

HH

���
��

Q
QQ

1 2 3 4 5

e Z2 Z3 S3 V A4 Z4 D4 S4 T

∆=(Pol. in x)2 ?

yes no

∆=(Pol. in x)2 ?

yes no

R reducible ? R reducible ?

yes no yes no

with
√
∆ ?

yes no

Figure A.1.: Scheme on how to determine the Galois group of a fully factorized
polynomial of a given order.

Proceeding as in the linear case, one must insert this into Φ(5)(z, x) and solve for a, b,
c, d, e and f . This time it has to be taken into account that Q is not a polynomial. If it
was, the quadratic term would factorize into two linear terms, which is excluded because
the search for linear factors is performed in advance. Inserting (A.7) into Φ(5)(z, x),
one therefore gets Φ(5)(x) = ∆1 + ∆2Q = 0, where ∆1 and ∆2 are polynomials in x
which have to vanish separately. From this it is also clear that the sign in front of Q
in (A.7) is irrelevant.

A.3. Galois groups

The Galois groupGP of Φ(5)(z, x) is the monodromy group of the T-brane configuration.
For a polynomial P k of order k it is a subgroup of the symmetric group Sk and a
subgroup of the alternating groupAk if and only if the discriminant ∆P =

∏
i<j(zi−zj)2,

where zi denote the roots of P , is the square of a polynomial in x [51]. For irreducible
polynomials GP is transitive and since the polynomials at hand are already factorized,
I will only consider irreducible polynomials of order one to five in the following.

The order-one case is trivial: The Galois group is the identity element e.

For order two the symmetric group S2 is Z2 and the alternating group A2 is e, which
is not transitive and therefore cannot appear. Hence, the monodromy group must beZ2.
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The possible transitive groups of order three are S3 andA3 = Z3. Here, the discriminant
condition must be checked.

Order four is slightly more complicated. The transitive subgroups of S4 are S4, A4,
V = Z2×Z2, C4 = Z4 and the dihedral group D4. V is a subgroup of A4, and thus, the
discriminant-condition divides the groups into the classes A4, V and S4, C4, D4. One
can further differentiate between A4 and V as well as between S4 and C4, D4 by testing
if the cubic resolvent R of P is reducible. Finally, C4 and D4 can be distinguished by
checking whether P factorizes over the polynomials in x together with

√
∆, see figure

A.1.

For order five the calculation of the Galois group becomes very complicated, so I will
leave it at the information that it must be a transitive group and denote it by T .

A.4. Systematic scan: Tables

Each of the following tables is associated with one of the eleven Galois groups. GG :
e×Z2

2 means for example that all matrices or polynomials, respectively, which are listed
in the table have the Galois group e × Z2

2. The rows are ordered by polynomials such
that matrices with equal spectral polynomials are placed directly below each other. In
many cases I do not show the matrices themselves but only a number: N.o.m. stands
for the number of matrices which have the properties shown to the right of it. These
are the spectral polynomial in the second column, displayed in its fully factorized
form by listing the factors, and the matter spectrum in the third and fourth column.
The integers m and n denote the powers of x in f (5)m = xm and f (10)n = xn for
which the equations (6.27) have a solution. If n = 1 for example, this means that the
corresponding matrix gives rise to a 5 of SU(5). Remember that the 5 and 10 in (6.27)
denote representations of SU(5)⊥. For the Galois groups whose matrices never give
rise to a 10, the m-column is omitted.

I only list those matrices which do give rise to matter. There may be more which do
not support any matter at all. They are not accounted for. Furthermore, there are
Higgs fields for which n is not unique. In all these cases I listed the explicit solutions
for the localized mode η(10) in vector form. This is to be understood as

{η1, η2, η3, η4, η5, η6, η7, η8, η9, η10} ∼=




0 η1 η2 η3 η4

−η1 0 η5 η6 η7

−η2 −η5 0 η8 η9

−η3 −η6 −η8 0 η10

−η4 −η7 −η9 −η10 0



.

Let me give an example:

2
{
1, x2, 1

2
x
(
−1 + x+ 2x3

)
,−2x, 1

2
x
(
1 + x+ 2x3

)
, x,−2x3, 2x3, x2, 2x2

}

3
{
1, x2, 1

2
x2

(
−1 + x+ 2x2

)
,−2x, 1

2
x2

(
1 + x+ 2x2

)
, x,−2x3, 2x3, x3, 2x2

}

4
{
− 1

2
,−x2

2
,−x3

2
, x, x3

2
,−x

2
, x3,−x3, x4,−x2

}

means that a 5 of SU(5) is present at n = 2, 3, 4. The η’s listed with them are gauge
inequivalent since all gauge equivalent solutions have been sorted out. From all the
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gauge equivalent modes I kept those with the lowest n values. Finally, the polynomials
listed under ”No matter” do not have any matrices that give rise to matter. If this part
of a table is absent, such polynomials do not exist.

For the sake of readability the information for the group e×D4 is scattered over three
tables.

GG: e× e× e× e× e
Higgs m n




0 1 0 0 0
0 0 1 x 0
0 0 0 1 0
0 0 x2 0 1
0 0 0 0 0


 {z, z, z,−x+ z, x+ z} − 3




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 x3 0 0


 {z, z,−x+ z, ax+ z, bx+ z} −

1 {1, 0,−1 + x, 0, 1, 0, 0, 0, 0, 0}
2

{
1, 0,−1 + x2, 0, 1, 0, 0, 0, 0, 0

}

3
{
1, 0,−1 + x3, 0, 1, 0, 0, 0, 0, 0

}




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 x3 0 0 1
0 0 0 0 0


 {z, z,−x+ z, ax+ z, bx+ z} −

1
{
1, 0,−1 + x,−x3, 1, 0, 0, 0, x3, 0

}

2
{
1, 0,−1 + x2,−x3, 1, 0, 0, 0, x3, 0

}

3
{
1, 0,−1 + x3,−x3, 1, 0, 0, 0, x3, 0

}

No matter:
{z, z, z, z, z}

In the above, a = −1
2

(
−1− i

√
3
)
and b = x

2
− 1

2
i
√
3.

GG: e× e× e× Z2

Higgs n




0 1 0 0 0
0 0 1 x 0
0 0 0 1 0
0 0 x 0 1
0 0 0 0 0


 ,




0 1 0 0 x
0 0 1 x 0
0 0 0 1 0
0 0 x 0 1
0 0 0 0 0


 ,




0 1 x 0 0
0 0 1 x 0
0 0 0 1 0
0 0 x 0 1
0 0 0 0 0




{
z, z, z,−x+ z2

}
2




0 1 0 0 0
0 0 1 x2 0
0 0 0 1 0
0 0 x 0 1
0 0 0 0 0




{
z, z, z,−x+ z2

}
3

No matter:{
z, z, z,−2x+ z2

}
{
z, z, z,−x− x2 + z2

}
{
z, z, z,−x3 + z2

}
{
z,−x+ z, x+ z,−x+ z2

}

GG: e× Z2 × Z2

N.o.m. n

4
{
z,−x+ z2,−x+ z2

}
2

No matter:
{z,−2x+ z2,−x+ z2}
{z,−x+ z2, x+ z2}

{z,− 1
2

(
1−

√
5
)
x+ z2,−x

2
−

√
5x
2

+ z2}
{z,− 1

2

(
3−

√
5
)
x+ z2,− 3x

2
−

√
5x
2

+ z2}

GG: e× Z2
2

No matter:{
z,−x2 − x3z2 + z4

}

GG: e× Z4

No matter:{
z,−2x+ z4

}
{
z,−x+ z4

}
{
z,−x− x2 + z4

}
{
z,−x3 + z4

}
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GG: e×D4

N.o.m. n

2
{
z,−x− 2xz + z4

}
1

2
{
z,−x− 2xz + z4

}
2

2
{
z,−x3 − 2xz + z4

}
4

1
{
z,−x3 − 2xz + z4

}
2

{
1, x2, 1

2
x
(
−1 + x+ 2x3

)
,−2x, 1

2
x
(
1 + x+ 2x3

)
, x,−2x3, 2x3, x2, 2x2

}

3
{
1, x2, 1

2
x2

(
−1 + x+ 2x2

)
,−2x, 1

2
x2

(
1 + x+ 2x2

)
, x,−2x3, 2x3, x3, 2x2

}

4
{
− 1

2
,−x2

2
,−x3

2
, x, x3

2
,−x

2
, x3,−x3, x4,−x2

}

2
{
z,−2x− xz + z4

}
1

1
{
z,−2x− xz + z4

}
2

1
{
z,−x− xz + z4

} 1 {1, 0,−1 + x, 0, 1, 0, 0, x, 0, 0}
2{−1, 0, (−1 + x)x, 0, x, 0, 0,−x, 0, 0}

1
{
z,−x− xz + z4

} 1 {1, 0,−1 + x,−x, 1, 0, 0, x, x, 0}
2
{
1, 0, (−1 + x)x,−x, x, 0, 0, x, x2, 0

}

1
{
z,−x− xz + z4

} 1
{
1, 0,−1 + x+ x2,−x, 1, 0, 0, x, x, 0

}

2
{
1, 0, x(−1 + 2x),−x, x, 0, 0, x, x2, 0

}

1
{
z,−x− xz + z4

}
2

1
{
z,−x− xz + z4

} 1
{
1, 0, 1,−x,−1 + x, x, 0, x,−x, x2

}

2
{
1, 0,−x,−x, x(1 + x), x, 0, x, x2, x2

}

4
{
z,−x− xz + z4

}
1

2
{
z,−x2 − xz + z4

}
1

1
{
z,−x2 − xz + z4

} 1
{
1, 0,−1 + x, 0, 1, 0, 0, x2, 0, 0

}

2
{
1, 0, (−1 + x)x, 0, x, 0, 0, x2, 0, 0

}

3
{
−1, 0, (−1 + x)x2, 0, x2, 0, 0,−x2, 0, 0

}

1
{
z,−x2 − xz + z4

} 1
{
1, 0,−1 + x,−x, 1, 0, 0, x2, x, 0

}

2
{
1, 0, (−1 + x)x,−x, x, 0, 0, x2, x2, 0

}

3
{
1, 0, (−1 + x)x2,−x, x2, 0, 0, x2, x3, 0

}

1
{
z,−x2 − xz + z4

}
3

1
{
z,−x2 − xz + z4

} 1
{
1, 0, 1,−x,−1 + x, x, 0, x2,−x, x2

}

2
{
1, 0,−x,−x, x(1 + x), x, 0, x2, x2, x2

}

3
{
1, 0,−x2,−x, x2(1 + x), x, 0, x2, x3, x2

}

1
{
z,−2x− 2x2z + z4

} 2
{
1, 1

2

(
x− x3

)
, 1
2

(
−1 + x2

)
,−2x2, 1

2

(
1 + x2

)
, 2x2,−x, 2x, 1

2

(
x2 − x4

)
, 1
2
x
(
1 + x2

)}

3
{
1, 1

2

(
x2 − x4

)
, 1
2
x
(
−1 + x2

)
,−2x2, 1

2
x
(
1 + x2

)
, 2x2,−x, 2x, 1

2

(
x3 − x5

)
, 1
2
x2

(
1 + x2

)}

1
{
z,−2x− x2z + z4

} 1
{
1, 0,−1 + x+ x3,−x2, 1, x2,−x, 2x, x2, x

}

2
{
1, 0,−1 + x2 + x3,−x2, 1, x2,−x, 2x, x2, x

}

3
{
1, 0,−x+ 2x3,−x2, x, x2,−x, 2x, x3, x2

}

1
{
z,−2x− x2z + z4

} 1
{
1, x,−1 + x,−2x2 − x4, 1, 0,−x− x3, 2x+ x3, x2, x

}

2
{
1, x,−1 + x2,−2x2 − x4, 1, 0,−x− x3, 2x+ x3, x2, x

}

1
{
z,−x− x2z + z4

} 1
{
1, 0,−1 + x,−x2, 1, 0,−x, x, x2, x

}

2
{
1, 0,−1 + x2,−x2, 1, 0,−x, x, x2, x

}

1
{
z,−x− x2z + z4

} 1
{
1, 0,−1 + x,−x2, 1, 0, 0, x, x2, 0

}

2
{
1, 0,−1 + x2,−x2, 1, 0, 0, x, x2, 0

}

3
{
1, 0,−x+ x3,−x2, x, 0, 0, x, x3, 0

}

1
{
z,−x− x2z + z4

} 2
{
1, 0, 1,−x2,−1 + x2, x2,−x, x,−x2,−x+ x3 + x4

}

3
{
1, 0,−x,−x2, x

(
1 + x2

)
, x2,−x, x, x3, x2

(
1 + 2x2

)}

1
{
z,−x− x2z + z4

} 1
{
1, 0, 1,−x2,−1 + x, x2, 0, x,−x2, x4

}

2
{
1, 0, 1,−x2,−1 + x2, x2, 0, x,−x2, x4

}

3
{
1, 0,−x,−x2, x

(
1 + x2

)
, x2, 0, x, x3, x4

}

5
{
z,−x− x2z + z4

}
3

3
{
z,−x− x3z + z4

}
4

1
{
z,−x2 − x3z + z4

}
5

1
{
z,−x2 − x3z + z4

} 2
{
1, x− x3,−1 + x2,−x3, 1, x3,−x2, x2, 0, x2

}

3
{
1, x− x4,−1 + x3,−x3, 1, x3,−x2, x2, 0, x2

}

5
{
−1, x3 − x6,−x2 + x5, x3, x2,−x3, x2,−x2, 0, x4

}

1
{
z,−x2 − x3z + z4

} 3
{
1, x,−1,−x3, 1 + x3, x3, 0, x2, x3, 0

}

5
{
−1, x3,−x2, x3, x2

(
1 + x3

)
,−x3, 0,−x2, x5, 0

}

1
{
z,−x2 − x3z + z4

} 3
{
1, x,−1 + x3,−x3 − x5, 1, 0,−x4, x2

(
1 + x2

)
, x3, 0

}

5
{
−1− x4, x3,−x2 + x5, x3, x2, 0,−x6,−x2, x5, 0

}

2
{
z,−x+

(
−x− x2

)
z + z4

}
1

6
{
z,−x− xz − xz2 + z4

}
1

1
{
z,−x− xz − xz2 + z4

} 1 {1, 0,−1, 0, 1, 0, 0, x, 0, 0}
2
{
1, 0,−2x+ x2, 0, x, 0, 0, x, 0, 0

}

1
{
z,−x− xz − xz2 + z4

} 1 {1, 0,−1,−x, 1, 0, 0, x, x, 0}
2
{
1, 0,−2x+ x2,−x, x, 0, 0, x, x2, 0

}

1
{
z,−x− xz − xz2 + z4

} 1
{
1, 0, 1,−x,−1, x, 0, x,−x− x2, x2

}

2
{
1, 0,−2x,−x, x(1 + x), x, 0, x, x2, x2

}

4
{
z,−x− xz − xz2 + z4

}
2

1
{
z,−x3 − xz − xz2 + z4

}
4
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GG: e×D4

N.o.m. n

1
{
z,−x− x2z − xz2 + z4

} 1
{
1,−x, 1,−x2,−1, x2, 0, x,−x2 − x3, 0

}

2
{
1, x(1 + x),−1− x,−x2, 1 + x2, x2, 0, x, x2, 0

}

3
{
1, 2x2,−2x,−x2, x

(
1 + x2

)
, x2, 0, x, x3, 0

}

1
{
z,−x− x2z − xz2 + z4

}
3

2
{
z,−x− x3z − xz2 + z4

}
4

1
{
z,−x− xz − x2z2 + z4

} 1 {1, 0,−1 + x, 0, 1, 0, 0, x, 0, 0}
2{−1, 0, (−1 + x)x, 0, x, 0, 0,−x, 0, 0}

2
{
z,−x− xz − x2z2 + z4

}
1

1
{
z,−x− xz − x2z2 + z4

} 1
{
1, 0,−1 + x+ x2,−x, 1, 0, 0, x, x, 0

}

2
{
1, 0, x(−1 + 2x),−x, x, 0, 0, x, x2, 0

}

1
{
z,−x− xz − x2z2 + z4

}1
{
1, x2, 1,−x,−1 + x+ x2 + x4, x,−x3, x

(
1 + x2

)
,−x+ x3, x2

}

2
{
1, x2, (−1 + x)x,−x, x

(
1 + x+ x3

)
, x,−x3, x

(
1 + x2

)
, x2, x2

}

GG: e×D4

No matter:{
z,−x− x3 − xz + z4

}
{
z,−x+ x2 − 2xz2 + z4

}
{
z,−2x− xz2 + z4

}
{
z,−x− xz2 + z4

}
{
z,−x− x3 − xz2 + z4

}
{
z,−2x− x2z2 + z4

}
{
z,−x− x2z2 + z4

}
{
z,−x− 2x2z + z4

}
{
z,−x− x3z2 + z4

}
{
z,−x+

(
−x− x2

)
z2 + z4

}
{
z,−x+ x3 +

(
−x− x2

)
z2 + z4

}
{
z,−x− 2xz2 + z4

}
{
z,−x2 − xz − 2xz2 + z4

}
{
z,−x− x2z − x2z2 + z4

}
{
z,−x+ (−x− x2)z − x2z2 + z4

}

GG: Z2 × Z3

N.o.m. m n

7
{
−x+ z2,−x+ z3

}
1 −

2
{
−x+ z2,−x+ z3

}
1 2

1
{
−x+ z2,−x2 + z3

}
1 −

1
{
−x+ z2,−x2 + z3

}
2 2

GG: Z2 × S3

Higgs m n




0 1 0 0 0
0 0 1 0 0
x x 0 1 0
0 0 0 0 1
0 0 0 x 0


 ,




0 1 0 0 0
x 0 1 0 0
x 0 0 1 0
0 0 0 0 1
0 0 0 x 0




{
−x+ z2,−x− xz + z3

}
1 −




0 1 0 0 0
x 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 x x 0




{
−x+ z2,−x− xz + z3

}
1 4




0 1 0 0 0
x 0 1 0 0
0 0 0 1 0
0 0 x 0 1
0 0 x 0 0




{
−x+ z2,−x− xz + z3

}
− 4




0 1 0 0 0
x 0 1 0 0
0 0 0 1 x
0 0 0 0 1
0 0 x 0 0




{
−x+ z2,−x− x2z + z3

}
1 2




0 1 x 0 0
0 0 1 0 0
x 0 0 1 0
0 0 0 0 1
0 0 0 x 0




{
−x+ z2,−x− x2z + z3

}
1 −
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GG: e× e× Z3

Higgs/N.o.m. m n




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 x 0 0 1
0 0 x 0 0


 ,




0 1 0 x 0
0 0 1 0 0
0 0 0 1 0
0 x 0 0 1
0 0 x 0 0




{
z, z,−2x+ z3

}
−

1 {1, 0,−1 + x,−x,1, 0, 0, 0, x, 0}
4

{
1, 0, 1

2
x3(−1 + 2x),−x, x3

2
, 0, 0, 0, x4

2
, 0
}




0 1 0 0 0
0 0 1 0 0
x 0 0 1 0
0 x 0 0 1
0 0 0 0 0




{
z, z,−2x+ z3

}
− 2




0 1 x 0 0
0 0 1 0 0
0 0 0 1 0
0 x 0 0 1
0 0 x 0 0




{
z, z,−2x+ z3

}
−

1
{
1, x,−1 + x,−x− 2x3, 1, 0,−2x2, 2x2, x, 0

}

6
{
1, x6

2
, 1
2
x5(−1 + 2x),−x− x8, x5

2
, 0,−x7, x7, x6

2
, 0

}

14
{
z, z,−x+ z3

}
− 1

3
{
z, z,−x+ z3

}
− 3

2
{
z, z,−x+ z3

}
− 4

4
{
z, z,−x+ z3

}
− 5



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 x2 0 0


 ,




0 1 0 0 0
0 0 1 0 x
0 0 0 1 0
0 0 0 0 1
0 0 x2 0 0




{
z, z,−x2 + z3

}
− 1 {1, 0,−1 + x, 0, 1, 0, 0, 0, 0, 0}

2
{
1, 0,−1 + x2, 0, 1, 0, 0, 0, 0, 0

}




0 1 0 x 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 x2 0 0







0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 x2 0 0 1
0 0 0 0 0


 ,




0 1 0 x 0
0 0 1 0 0
0 0 0 1 0
0 x2 0 0 1
0 0 0 0 0




{
z, z,−x2 + z3

}
− 1

{
1, 0,−1 + x,−x2, 1, 0, 0, 0, x2, 0

}

2
{
1, 0,−1 + x2,−x2, 1, 0, 0, 0, x2, 0

}




0 1 0 0 0
0 0 1 0 0
0 0 0 1 x
0 x2 0 0 1
0 0 0 0 0


 ,




0 1 0 0 x
0 0 1 0 0
0 0 0 1 0
0 x2 0 0 1
0 0 0 0 0




{
z, z,−x2 + z3

}
− 1

{
1, 0,−1 + x+ x3,−x2, 1, 0, 0, 0, x2, 0

}

2
{
1, 0,−1 + x2 + x3,−x2, 1, 0, 0, 0, x2, 0

}




0 1 0 0 0
0 0 1 0 x
0 0 0 1 0
0 x2 0 0 1
0 0 0 0 0




{
z, z,−x2 + z3

}
− 1

{
1, x3(1 + x),−1 + x,−x2 − x3, 1, x3, 0, 0, x2, 0

}

2
{
1, x3(1 + x),−1 + x2,−x2 − x3, 1, x3, 0, 0, x2, 0

}

1
{
z, z,−x2 + z3

}
− 3



0 1 x 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 x2 0 0




{
z, z,−x2 + z3

}
− 1

{
1, x,−1 + x,−x4, 1, 0,−x3, x3, 0, 0

}

2
{
1, x,−1 + x2,−x4, 1, 0,−x3, x3, 0, 0

}




0 1 x 0 0
0 0 1 0 0
0 0 0 1 0
0 x2 0 0 1
0 0 0 0 0




{
z, z,−x2 + z3

}
− 1

{
1, x,−1 + x,−x2 − x4, 1, 0,−x3, x3, x2, 0

}

2
{
1, x,−1 + x2,−x2 − x4, 1, 0,−x3, x3, x2, 0

}

2
{
z, z,−x− x2 + z3

}
− 1



0 1 0 0 0
0 0 1 0 0
x 0 0 1 0
0 0 0 0 1
0 0 0 x2 0




{
−x+ z, x+ z,−x+ z3

}
2 −

1
{
−x+ z, x+ z,−x+ z3

}
1 3

No matter:{
z, z,−3x+ z3

}
{
z, z,−2x− x3 + z3

}
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GG: e× e× S3

N.o.m. n

2
{
z, z,−x− 2xz + z3

}
4

2
{
z, z,−x− 2xz + z3

}
1

1
{
z, z,−x− 2xz + z3

}
2

2
{
z, z,−2x− xz + z3

}
4

1
{
z, z,−2x− xz + z3

} 1 {1, 0,−1 + x,−x, 1, 0, 0,−x, x, 0}
6

{
1, 0, 1

2
x5(−1 + 2x),−x, x5

2
, 0, 0,−x6

2
, x6

2
, 0
}

1
{
z, z,−2x− xz + z3

} 1 {1, 0,−1,−x, 1, 0, 0, 0, x, 0}
4

{
1, 0, 1

2

(
−2x− x3 + 2x4

)
,−x, x3

2
, 0, 0, 0, x4

2
, 0
}

1
{
z, z,−2x− xz + z3

}
2

3
{
z, z,−x− xz + z3

}
3

14
{
z, z,−x− xz + z3

}
1

1
{
z, z,−x− xz + z3

}
2

1
{
z, z,−x− xz + z3

} 1
{
1, 0, 1,−x,−1, x, 0, 0,−x− x2, x2

}

2
{
1, 0,−2x,−x, x(1 + x), x, 0, 0, x2, x2

}

3
{
z, z,−x− xz + z3

}
5

4
{
z, z,−x− xz + z3

}
4

1
{
z, z,−x2 − xz + z3

}
3

1
{
z, z,−x2 − xz + z3

} 1 {1, 0,−1 + x, 0, 1, 0, 0,−x, 0, 0}
2

{
1, 0,−1 + x2, 0, 1, 0, 0,−x, 0, 0

}

1
{
z, z,−x2 − xz + z3

}
2

1
{
z, z,−x2 − xz + z3

} 1
{
1, 0,−1 + x,−x2, 1, 0, 0,−x, x2, 0

}

2
{
1, 0,−1 + x2,−x2, 1, 0, 0,−x, x2, 0

}

1
{
z, z,−x2 − xz + z3

} 1 {1, 0,−1, 0, 1, 0, 0, 0, 0, 0}
2

{
1, 0,−1− x+ x2, 0, 1, 0, 0, 0, 0, 0

}

1
{
z, z,−x2 − xz + z3

} 1
{
1, 0,−1,−x2, 1, 0, 0, 0, x2, 0

}

2
{
1, 0,−1− x+ x2,−x2, 1, 0, 0, 0, x2, 0

}

1
{
z, z,−x2 − xz + z3

} 1
{
1, 0, 1,−x2,−1, x2, 0, 0,−x2 − x3, x4

}

2
{
1, 0, 1,−x2,−1− x+ x2, x2, 0, 0,−x2 − x3, x4

}

3
{
1, 0,−2x,−x2, x

(
1 + x2

)
, x2, 0, 0, x3, x4

}

2
{
z, z,−2x− x2z + z3

}
4

2
{
z, z,−x− x2z + z3

}
4

7
{
z, z,−x− x2z + z3

}
1

2
{
z, z,−x− x2z + z3

}
3

1
{
z, z,−x− x2z + z3

} 1
{
1, 0, 1,−x,−1 + x− x2, x, 0, 0,−x− x3, x2

}

2
{
1, 0,−x− x2,−x, x(1 + x), x, 0, 0, x2, x2

}

2
{
z, z,−x− x2z + z3

}
2

1
{
z, z,−x− x3z + z3

}
1

1
{
z, z,−x− x3z + z3

}
3

1
{
z, z,−x2 − x3z + z3

} 1 {1, 0,−1 + x, 0, 1, 0, 0, 0, 0, 0}
2

{
1, 0,−1 + x2, 0, 1, 0, 0, 0, 0, 0

}

1
{
z, z,−x2 − x3z + z3

}
2

2
{
z, z,−x+

(
−x− x2

)
z + z3

}
1

2
{
z, z,−x+

(
−x− x2

)
z + z3

}
4

1
{
z, z,−x+

(
−x− x2

)
z + z3

}
2

1
{
z, z,−x+

(
−x− x2

)
z + z3

}
3

No matter:{
z, z,−x3 − 2xz + z3

}
{
z, z,−x− x3 − xz + z3

}
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In the following table I only listed the non-reconstructible Higgs fields.

GG: T
N.o.m. m n

1
{
−x2 + z5

}
1

1 {1, 0, 1, 0,−1 + x, 0, 0, 0, 0, 0}
2

{
−1, 0, 1, 0,−1 + x2, 0, 0, 0, 0, 0

}

1
{
−x3 + z5

}
1

1 {1, 0, 1, 0,−1 + x, 0, 0, 0, 0, 0}
2

{
1, 0, 1, 0,−1 + x2, 0, 0, 0, 0, 0

}

3
{
−1, 0, 1, 0,−1 + x3, 0, 0, 0, 0, 0

}

1
{
−x3 − 2xz + z5

}
3

1
{
1,−x2,−1 + x− x4, x2, 1, 0,−x, 2x,−x3, x

}

2
{
1,−x2,−1 + x2 − x4, x2, 1, 0,−x, 2x,−x3, x

}

3
{
−1, x2,−1 + x3 + x4, x2, 1, 0, x,−2x, x3, x

}

1
{
−x2 − xz + z5

}
1 2

1
{
−x2 − xz + z5

}
1

1 {1, 0, 1, 0,−1 + x, 0, 0, x, 0, 0}
2

{
1, 0, 1, 0,−1 + x2, 0, 0, x, 0, 0

}

1
{
−x2 − x3z + z5

}
1

1 {1, 0, 1, 0,−1 + x, 0, 0, 0, 0, 0}
2

{
−1, 0, 1, 0,−1 + x2, 0, 0, 0, 0, 0

}

1
{
−x2 − x3z + z5

}
1 1

1
{
−x2 − x3z + z5

}
1 −

1
{
−x3 − 2xz2 + z5

}
3 5

1
{
−x2 − xz2 + z5

}
1

2
{
1, 0,−2x+ x2, 0, 2x, 0, 0, 0, 0, 0

}

3
{
1, 0,−x− x2 + x3, 0, x(1 + x), 0, 0, 0, 0, 0

}

1
{
−x2 − xz2 + z5

}
1

2
{
1, 0,−2x+ x2,−x, 2x, 0, 0, 0, 2x2, 0

}

3
{
1, 0,−x− x2 + x3,−x, x(1 + x), 0, 0, 0, x2(1 + x), 0

}

1
{
−x2 − xz2 + z5

}
1

1
{
1, 0, 1,−x,−1 + x, x, 0, 0,−x, x2

}

3
{
1, 0,−x− x2,−x, x

(
1 + x+ x2

)
, x, 0, 0, x2(1 + x), x2

}

1
{
−x3 − xz − xz2 + z5

}
3

1 {1, 0,−1 + x, 0, 1, 0, 0, x, 0, 0}
2 {−1, 0, (−1 + x)x, 0, x, 0, 0,−x, 0, 0}

1
{
−x3 − xz − xz2 + z5

}
3 −

2
{
−x2 − x3z2 + z5

}
1

1 {1, 0, 1, 0,−1 + x, 0, 0, 0, 0, 0}
2

{
−1, 0, 1, 0,−1 + x2, 0, 0, 0, 0, 0

}

1
{
x2 − xz2 − 2xz3 + z5

}
1 −

1
{
x2 − xz2 − 2xz3 + z5

}
1 3

1
{
−x2 − xz3 + z5

}
1

1
{
1, 0, 1, 0,−1 + x, 0,−x, x, 0,−x2

}

2
{
−1, 0, 1, 0,−1 + x2, 0,−x, x, 0,−x2

}

1
{
−x2 − xz3 + z5

}
1 2

1
{
−x2 − xz3 + z5

}
1

1 {1, 0, 1, 0,−1, 0, 0, 0, 0, 0}
2

{
1, 0, 1, 0,−1− x+ x2, 0, 0, 0, 0, 0

}

1
{
−x2 − xz3 + z5

}
1

1 {1, 0, 1, 0,−1 + x, 0, 0,−x, 0, 0}
2

{
−1, 0, 1, 0,−1 + x2, 0, 0,−x, 0, 0

}

1
{
−x3 − xz − xz3 + z5

}
3 −

1
{
−x3 − xz − xz3 + z5

}
3 3

4
{
x2 − 2xz2 − xz3 + z5

}
1 −

2
{
x2 − xz − xz2 − xz3 + z5

}
1 −

1
{
x2 − xz − xz2 − xz3 + z5

}
1 1

1
{
x2 − xz − xz2 − xz3 + z5

}
1 2

1
{
−x2 − x3z3 + z5

}
1

1 {1, 0, 1, 0,−1 + x, 0, 0, 0, 0, 0}
2

{
−1, 0, 1, 0,−1 + x2, 0, 0, 0, 0, 0

}
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