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Chapter 1

Introduction

Today there are two physical theories which can describe almost all experimental
observations. On the one hand there is general relativity (GR), a classical field
theory of gravity. On the other hand the standard model (SM) is a quantum
field theory that describes the fundamental particles and their strong, weak
and electromagnetic interactions. Unifying these theories into one fundamental
framework is probably the most important challenge in modern physics. Whereas
the scale of GR is set by the Planck mass, MP ≈ 1019 GeV, the SM is valid only
up to the electro-weak breaking scale, MEW ≈ 100 GeV. Thus, we need an
extension of the SM which is valid at higher scales up to the Planck scale.

One such extension is given by supersymmetry (SUSY). It predicts one super-
partner for each SM particle with different spin and this way removes quadratic
divergences from scalar mass terms. Since these superpartners have not been
observed yet, SUSY must be broken at a scale roughly above the SM scale. Fur-
thermore, the minimal supersymmetric extension of the standard model (MSSM)
provides unification of gauge couplings at a scale of MGUT ≈ 1016 GeV.

The gauge coupling unification is necessary for the realization of a grand
unified theory (GUT). The idea of a GUT is to embed the SM gauge group,
SU(3)C × SU(2)L × U(1)Y , into a bigger group. The best candidates for such
a group are SU(5) and SO(10), see [1]. Since GUTs predict proton decay they
must be broken at a scale around MGUT.

As a further step one can impose SUSY to be a local symmetry. This implies
invariance under local coordinate transformations which is the setup of GR.
Thus, such theories are called supergravity (SUGRA). Unfortunately SUGRA’s
are non-renormalizable theories and hence cannot be a fundamental theory which
should be valid at all scales.

In string theories the concept of the particle being the fundamental ingredient
is replaced by a string whose typical length is of the order of the string scale
MS ≈ 1017GeV1. Different oscillatons and windings of the string can represent

1This fixing of the string scale is only valid for the heterotic string which we consider here.
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2 CHAPTER 1. INTRODUCTION

different particles with different quantum numbers. One of the advantages of
string theories is that they are free of ultraviolet divergences and hence can act
as a fundamental description of gravity.

We are in particular interested in the E8×E8 heterotic superstring which au-
tomatically provides N = 1 SUGRA in d = 10 with an E8×E8 gauge theory. To
obtain the MSSM we can compactify the heterotic string on a Calabi–Yau (CY)
manifold with an appropriate gauge symmetry breaking. Another possibility is
compactification on an orbifold which can be seen as a singular limit of a CY.
This thesis deals with the comparison of these two paths.

Outline

This theses is organized as follows. In chapter 2 we present the heterotic string
and its compactification on an orbifold. The Z2,free symmetry of the Z2 × Z2

orbifold, which allows new ways of symmetry breaking, is discussed and one
particular MSSM model is shown. In chapter 3 we demonstrate how to resolve
orbifold singularities. This procedure is called blow-up. We first resolve local
singularities and then glue them together to obtain a smooth compact manifold
and study its properties. In chapter 4 we discuss heterotic model building on
the resolved CY manifold. We are particularly interested in finding a matching
of the orbifold and the CY models. Finally we also present an exact MSSM
model on the blown-up Z2 × Z2 × Z2,free orbifold. Here the Z2,free allows us to
break an SU(5) GUT to the SM without breaking the hypercharge, which was
not possible in other blow-up scenarios.



Chapter 2

Heterotic Strings on Orbifolds

Heterotic string theory [3,4] is probably the phenomenologically most interesting
among all string theories. In the low energy limit it provides besides SUGRA [5]
an E8 × E8 or SO(32) super Yang–Mills (SYM) theory, the former of which
nicely contains some useful GUT groups and a hidden sector for SUSY breaking
dynamics. To obtain a theory in d = 4 with N = 1 SUSY the heterotic string can
be compactified e.g. on an orbifold [6–9] such that the gauge group gets broken
and chiral matter appears. Some of these theories contain the MSSM [10] and
could hence connect string theory to our world. In the past years a huge amount
of heterotic MSSM models [16–20] was found with various phenomenological
properties.

2.1 The Heterotic String

The simplest consistent quantized string theory one can write down is the bosonic
string in d = 26. Alone it is phenomenologically unsuitable since it cannot de-
scribe fermionic degrees of freedom (dofs) and since it has a tachyon so the real
ground state of this theory is unknown. These problems can be avoided in a su-
perstring theory. Here one imposes supersymmetry on the world sheet (WS) and
obtains after quantization a N = 1 spacetime (ST) supersymmetric theory with
critical dimension d = 10. This means that after the GSO projection imposed by
modular invariance the bosonic dofs from the Neveu–Schwarz (NS) sector and
the fermionic dof’s from the Ramond (R) sector appear in supermultiplets.

Now when one looks at closed strings where the left- and right-moving string
excitations are somehow decoupled one has to take the tensor product of the
Hilbert space with itself which results in an N = 2 theory in d = 10.

One can use the decoupling of the left- and right-movers and try to construct
a string theory where they behave totally differently. The idea of heterosis is to
have a right-moving superstring in d = 10 and a left-moving bosonic string with
d = 26. We will see that this way we automatically obtain a E8 ×E8 or SO(32)

3



4 CHAPTER 2. HETEROTIC STRINGS ON ORBIFOLDS

gauge theory in the low-energy sector. There is also an analogous fermionic
description in which the left mover is a d = 10 bosonic string with additional
fermions to cancel the conformal anomaly, see e.g. [2].

Mode Expansion

The right-movers on the worldsheet are supermultiplets containing a WS scalar
Xµ

R(σ−) and a WS Majorana Weyl spinor ψµ
R(σ−) which both carry a spacetime

index µ = 0 . . . 9. The left-movers contain the partners of the right-moving
bosons Xµ

L(σ+) and 16 additional bosons XI
L(σ+), I = 1 . . . 16. After fixing the

worldsheet metric the action is given by

S =
1

π

∫

d2σ
(

2∂+X
µ∂−Xµ + iψµ

R∂−ψR,µ + 2∂+X
I∂−XI

)

, (2.1)

where Xµ = Xµ
R + Xµ

L and XI = XI
L. In order to quantize the theory, we can

perform a mode expansion. Let us start with the right movers. The bosons
can be expanded in Fourier modes respecting the periodicity on the cylindric
worldsheet,

Xµ
R(σ−) = xµ

R + pµ
R(τ − σ) +

i

2

∑

n∈Z
n 6=0

1

n
αµ

ne
−2in(τ−σ) . (2.2)

The fermions allow for two different periodicity conditions, ψ(σ− + π) = ±ψ(σ−).
The periodic ones correspond to the R sector while the antiperiodic ones build
up the NS sector. These two sectors have to be studied separately since they
result in completely different Hilbert spaces. In the R sector the worldsheet
fermions can be expanded in integer modes denoted by dµ

n,

ψ
(R)µ
R (σ−) =

∑

n∈Z dµ
ne

−2in(τ−σ) . (2.3)

In the NS sector the antiperiodicity leads to half integer modes bµr ,

ψ
(NS)µ
R (σ−) =

∑

r∈Z+ 1

2

bµr e
−2ir(τ−σ) . (2.4)

Let us discuss the left-movers. They form a 26 dimensional bosonic string but
it is necessary to distinguish between the 10 spacetime dimensions and the 16
remaining ones. The spacetime left-movers are the partners of the right-moving
bosons

Xµ
L(σ+) = xµ

L + pµ
L(τ + σ) +

i

2

∑

n∈Z
n 6=0

1

n
α̃µ

ne
−2in(τ+σ) . (2.5)
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Since the heterotic string theory is a closed string theory the coordinates have
to satisfy the boundary condition

X(σ = π) = X(σ = 0) . (2.6)

Although the remaining left-movers have the same mode expansion they are
denoted by a capital latin index I. They span the gauge dimensions.

XI
L(σ+) = xI

L + pI
L(τ + σ) +

i

2

∑

n∈Z
n 6=0

1

n
α̃I

ne
−2in(τ+σ) , I = 1 . . . 16 . (2.7)

For a non-compact dimension the momenta of the left- and right-movers are
forced to satisfy

pL = pR := p/2 . (2.8)

But for the gauge dimensions no right-moving momentum exists so the left-
moving one would have to be zero if these dimesions were not compact. One can
avoid this by compactifying them on a torus T 16. A torus can be described by a
lattice

Λ16 =
{

2π
∑

niei |ni ∈ Z} , (2.9)

spanned by 16 linearly independent vectors ei ∈ R16. This lattice can act on the
vector space by translation and one can easily see that it has a group structure.
It can be modded out which means we identify points in R16 which differ by a
lattice vector and the result is a torus T 16 = R16/Λ16. With the string being
compactified on a torus, the XI

L take values on T 16. It can be described e.g. by
XI

L taking values on the covering space R16 while taking the lattice group action
into account. This in particular means that one can have closed strings where
the starting and end point differ by a lattice vector and hence are mapped onto
each other.

XI(σ = π) = XI(σ = 0) + 2π
∑

wie
I
i , Wi ∈ Z . (2.10)

Here we automatically obtain the concept of winding numbers wi. Every string
state has a winding number which is topologically stable since the heterotic
string is oriented. In the mode expansion the only way to realize (2.10) while
fulfilling the equations of motion (eom) is to have a term linear in σ. For the
mode expansion (2.7) it follows that the momentum has to be twice a lattice
vector pI

L = 2wie
I
i . After quantization the single valuedness of the wave function

dictates the momentum to be quantized such that it takes values in the dual
lattice

Λ∗ :=
{

v ∈
(R16

)∗ | vI w
I ∈ Z ∀ w ∈ Λ

}

. (2.11)
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Furthermore, modular invariance of the one-loop vacuum-to-vacuum amplitude
requires the lattice to be self-dual (Λ = Λ∗) and even (v2 ∈ 2Z ∀v ∈ Λ) so the
requirement of the momentum being in the lattice and the dual lattice at the
same time is always fulfilled. Fortunately, there exist two even self-dual lattices
in 16 dimensions, the root lattices of SO(32) and of E8 × E8, denoted by Γ16

and Γ8 ⊕ Γ8 respectively. They lead to the two distinct heterotic string theories
of which only the former will be considered.

Energy Momentum Tensor

String theory is a superconformal field theory, i.e. the action is invariant under
superconformal transformations. Thus the dof’s which appear in the mode ex-
pansion are not all physical. In other words, negative or zero norm states appear
and have to be decoupled from the physical ones. This can be done by going to
the lightcone gauge which removes the non physical dof’s. In this situation the
eom of the metric and the WS gravitino can be imposed as equations for the
string modes which remove the unphysical dof’s. These equations read

T++ = 0 , T−− = 0 , J− = 0 . (2.12)

Tαβ denotes the WS energy momentum tensor and J the WS supercurrent. In
terms of the fields they read

T++ = −∂+X
µ
L∂+XL,µ − ∂+X

I
L∂+XL,I , (2.13a)

T−− = −∂−Xµ
R∂−XR,µ − i

2
ψµ

R∂−ψR,µ , (2.13b)

J− = ψµ
R∂−XR,µ . (2.13c)

Note that the and left- and rightmover equations are completely decoupled. We
expand these fields in Fourier modes which are called super-Virasoro generators

T++ =
∑

n∈Z L̃ne
−2in(τ+σ) , (2.14a)

T−− =
∑

n∈ZLne
−2in(τ−σ) , (2.14b)

J
(R)
− =

∑

n∈Z Fne
−2in(τ−σ) , (2.14c)

J
(NS)
− =

∑

r∈Z+1/2

Gre
−2ir(τ−σ) . (2.14d)

In the right moving sector we distinguish between the R and NS sectors since the
periodicity differs between them. Combining equations (2.2)-(2.7), (2.13) and
(2.14), the super Virasoro generators can be expressed in terms of the modes
and momenta of the string fields. In this thesis the equations for the zero modes



2.1. THE HETEROTIC STRING 7

L0 and L̃0 are of particular interest since they are the mass equations for the
string states. We will encounter them in the blow-up models when identifying
the blow-up modes.

Quantization

In order to quantize the theory the fields and hence the modes become quantum-
mechanical operators which act on a Hilbert space. From the canonical com-
mutation relations for the fields one obtains the commutation relations for the
modes,

[α, α̃] = 0 , (2.15a)

[α̃µ
m, α̃

ν
n] = nδn+m,0η

µν , (2.15b)
[

α̃I
m, α̃

J
n

]

= nδn+m,0δ
IJ , (2.15c)

[αµ
m, α

ν
n] = nδn+m,0η

µν . (2.15d)

Due to their Grassmann property the fermionic modes fulfill anticommutation
relations,

{bµr , bνs} = δr+s,0η
µν , (2.16a)

{dµ
m, d

ν
n} = δm+n,0η

µν . (2.16b)

The reality of X and the Majorana property of ψ impose conditions on the
modes.

αn = α†
−n , α̃n = α̃†

−n , dr = d†−r , bn = b†−n . (2.17)

We immediately see that the modes act as ladder operators for an infinite series
of harmonic oscillators. The positive modes can be interpreted as annihilation
and the negative modes as creation operators which motivates the definition
of the Hilbert space H which is a direct product of a left and a rightmoving
part respecting the condition (2.8). A physical state |φ〉 ∈ H is defined by the
conditions

Ln|φ〉 = L̃n|φ〉 = 0 , ∀n > 0, (2.18a)

Fn|φ〉(R) = 0 , ∀n ≥ 0, (2.18b)

Gr|φ〉(NS) = 0 , ∀r ≥ 0 . (2.18c)

The zero mode equations obtain a shift aL/R due to normal ordering of the
modes,

(

L0 − aR

)

|φ〉 = 0 ,
(

L̃0 − aL

)

|φ〉 = 0 . (2.19)
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For the bosonic string and hence the left-movers one finds aL = 1. For the
right-moving superstring the shift differs between the two sectors, a

(R)
R = 0,

a
(NS)
R = 1/2. In terms of the modes, equations (2.19) define the mass operators,

M2
L

8
= −pL,µp

µ
L

8
=
pIp

I

2
+ Ñ − aL , (2.20a)

M2
R

8
= −pR,µp

µ
R

8
= N − aR , (2.20b)

with the number operators

Ñ :=

∞
∑

n=1

(

α̃µ
−nα̃n,µ + α̃I

−nα̃n,I

)

, (2.21)

N (R) :=
∞
∑

n=1

(αµ
−nαn,µ + dµ

−ndn,µ) , (2.22)

N (NS) :=
∞
∑

n=1

αµ
−nαn,µ +

∞
∑

r=1/2

bµ−rbr,µ . (2.23)

The total spacetime mass is the sum M = ML + MR and (2.8) implies that

ML = MR. This leads to the level matching condition pIpI

2
+ Ñ − aL = N − aR

which projects the product of the left- and right-mover Hilbert spaces on the
true on-shell Hilbert space.

Massless Spectrum

For phenomenology, it is of particular interest which states appear in the low en-
ergy sector of the theory. The masses of the massive string excitations are of the
order of the string scale which in heterotic string theory is aroundMS ≈ 1017 GeV
so they are all integrated out in a low energy description and we are left with
the massless modes.

Let us start with the right-movers. In the NS sector the ground state |0〉(NS)

is annihilated by all positive oscillators and has negative mass squared M2
R = −4.

The only massless state is bµ
−1/2|0〉 and transforms as a 8V under the little group

SO(8). It will be denoted by |q〉 where q = (±1, 0, 0, 0) is the SO(8) weight
vector. The underline denotes permutations.

The R ground state which the lowering operators annihilate and which is
already massless shows a degeneracy due to [L0, d

µ
0 ] = 0. We further find that

the fermionic zero modes satisfy a Clifford algebra {dµ
0 , d

ν
0} = ηµν so the R

ground state |0〉(R) is a ST fermion. By convention it is chosen as a left-chiral
Majorana–Weyl–fermion i.e. a 8S of SO(8). In a bosonized description it can also
be characterized by its weight |q〉 where now q = ([1

2
, 1

2
, 1

2
, 1

2
]). The rectangular

brackets denote even number of sign flips. Together the R and NS massless
states form a N = 1 vector multiplet in d = 10.



2.2. ORBIFOLDS 9

The left-moving ground state is defined as the one which is annihilated by
all lowering operators α̃−n|0〉 = 0, ∀n > 0, and has no momentum on the 16-
torus pI |0〉 = 0. Using (2.20a) one finds that this is a tachyon with M2

L = −8.
Fortunately its mass does not match with the tachyon from the right NS-sector
such that the lightest states with equal left- and right-mass are the massless
ones. Now there are two possibilities to get a massless state. One is to excite
an oscillator. With a spacetime oscillator one obtains a state which is a 8V of
SO(8) and in combination with the right-mover builds up the N = 1 SUGRA
multiplet in d = 10:

|q〉 ⊗ αµ
−1|0〉 →































gµν graviton ,

Bµν 2-form ,

φ dilaton ,

ψµ gravitino ,

ψ dilatino .

(2.24)

Group-theoretically one finds the decomposition

(8V ⊕ 8S) ⊗ 8V = 35V ⊕ 28 ⊕ 1 ⊕ 56C ⊕ 8C . (2.25)

With an oscillator in the gauge dimensions the states form a vector multiplet
which describes a U(1)16 SYM theory. The other possibility is to have non-
vanishing momentum around the 16-torus pI |P 〉 = P I |P 〉. Equation(2.20a) tells
that in this case N = 0 and P 2 = 2: These P are exactly the roots of E8×E8, see
appendix A, so in total we obtain 2 ·(112+128) = 480 new states. The 16 U(1)’s
now play the role of the Cartan algebra and we obtain gauge enhancement to
the desired E8 × E8:

|q〉 ⊗ αI
−1|0〉

|q〉 ⊗ |P 〉

}

→
{

Aa
µ gauge bosons ,

λa gauginos .
(2.26)

2.2 Orbifolds

The simplest way to obtain a d = 4 string theory is to compactify a d = 10 theory
on a torus T 6. It has the advantage that the torus is completely flat and hence
the construction of a quantized theory is straight forward (see e.g. the heterotic
setup). The generator of N = 1 SUSY in d = 10 is an 8 component Majorana–
Weyl spinor which completely survives the torus compactification. The result
is N = 4 SUSY in d = 4 which is phenomenologically unacceptable since it is
not chiral. The next idea is to try a toroidal orbifold. By definition an orbifold
is a manifold with a discrete symmetry modded out. Usually these symmetries
possess fix points which appear as singularities on the orbifold and allow for new
possibilities for string propagation on the space.
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Orbifold Geometry

The starting point of constructing a six dimensional orbifold is the torus T 6. It
is convenient to parameterize it by three complex coordinates zi ∈ C i = 1 . . . 3.
Again the torus is obtained by modding out a lattice Λ ∼= Z6, Λ ⊂ C3. The
coordinates are chosen such that the lattice factorizes. By absorbing the lattice
size into the metric we can achieve the lattice base vectors to be of the form,

e1 =





1
0
0



 , e2 =





τ1
0
0



 , e3 =





0
1
0



 ,

e4 =





0
τ2
0



 , e5 =





0
0
1



 , e6 =





0
0
τ3



 .

(2.27)

The complex numbers τi are called complex structure moduli. We obtain Λ =
⊕

i (Z⊕ τiZ).
The lattice and hence the torus can have a discrete symmetry group which

acts on the coordinates by rotations. The rotations appearing here are also
factorizable and Abelian, i.e. their action is

θ : zi → θzi = e2πivizi , no sum over i , (2.28)

with the twist vector v = (v1, v2, v3). The group of these rotations is called the
point group P . The vi are rational numbers which implies that the point group is
finite. In the examples studied here it is ZN or ZN ×ZM . In the first case we can
choose one generating element θ which is of order N , θN = 1, in the second case
we need two of them θ, θ′ which are of order N and M , respectively. Together
with the lattice translations the point group forms the space group S = P ⋉ Λ.
An element of the space group can be obtained by a rotation and a lattice shift,
(θ, niei) = g ∈ S with g : zi → θzi + n2i−1 + n2iτi.

Now we define the orbifold as the torus after modding out the point group,

O = T 6/P = C3/S . (2.29)

When we take a vector on the orbifold and parallel transport it along a curve
which is closed by some non-trivial point group element θ we find the vector
being rotated by θ = e2πi diag (v1,v2,v3). The CY condition requires the holonomy
group to be a subgroup of SU(3) which implies the condition,

∑

i

vi ≡ 0 mod 1 . (2.30)

It strongly restricts the number of possible orbifold point groups.
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Fixed Points

The action of the point group on the torus is not free, i.e. there exist points
which are mapped onto themselves. If the rotation θ acts non-trivially on all
coordinates we find exactly one fixed point for a given space group element,
zfix = (1−θ)−1niei. Otherwise, θ leaves one coordinate untouched and the fixed
point equation zfix = gzfix can have a one-dimensional space of solutions called
fixed torus1 or fixed (complex) line or fixed brane. The neighborhood of the
fixed point or line shows a deficit angle when surrounding it so there must be
curvature in form of a delta peak localized on it. Thus the fixed points are
singularities. In Chapter 3, we will show how to resolve the singularity and
smooth out the curvature. This way the topological structure of the singularity,
which is invisible on the orbifold, can be seen.

Orbifold Topology

Many properties of the low-energy effective theory, e.g. the massless chiral spec-
trum, can be obtained from the topological data of the compactification space.
The usual smooth manifold topology defined in terms of homology or cohomol-
ogy classes and their intersection numbers is not well-defined on the orbifold due
to the singularities. It can only be applied to the untwisted sector, but there
are also techniques to find the Hodge numbers coming from the twisted sectors.
When we resolve the singularities we will see the role of the “twisted topology”
by making a connection between the CY and the orbifold as its blow-down limit.

The “untwisted topology” can easily be described by the cohomology of the
underlying torus. On a complex torus T 2n a basis of (anti-)holomorphic 1-forms
is given by dzi (dz̄i), i = 1 . . . n. A complete basis2 of the cohomology ring is
obtained by wedging these 1-forms together in all possible ways. Using combi-
natorics one finds the torus Hodge numbers hp,q =

(

n
p

)

·
(

n
q

)

.

Let us take one element of a point group of type (2.28). Its action on the
1-forms is given by

θdzi = e2πividzi , θdz̄i = e−2πividz̄i , (2.31)

i.e. any of the basic forms transform with a phase. The forms which are invari-
ant under the point group survive the orbifolding procedure and build up the
untwisted cohomology group. Note that:

• There are at least the three (1, 1)-forms dzi ∧ dz̄i, i = 1 . . . 3. Their corre-
sponding Kähler moduli describe the sizes of the three 2-tori.

1Actually due to other twisting elements the fixed set is not always a torus but nevertheless
will be called fixed torus.

2As in this case such a basis can always be chosen to be harmonic.
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1 1 1

τ1 τ2 τ3

⋉ ⋉

Figure 2.1: Setup of the Z2 × Z2 orbifold as a fibre product,
O = T 2/Z2 ⋉ (T 2/Z2 ⋉ T 2). The grey region shows the fundamental domain.
The dots show where the fixed lines are located in each torus. The product of
two points corresponds to a fixed torus. The product of three dots is a point in
which fixed tori intersect.

• The holomorphic 3-form Ω := dz1 ∧ dz2 ∧ dz3 is always invariant due to
the CY condition (2.30).

• In order to have exactly N = 1 SUSY in d = 4 and not more, the holonomy
must be a subgroup of SU(3) but not of SU(2). This means that no coor-
dinate is allowed to stay untouched by the point group and in particular
none of the (1, 0) and (0, 1)-forms is invariant.

• From the previous fact and the existence of the holomorphic three form it
follows that the (2, 0) and (0, 2)-forms also do not survive.

The resulting Hodge diamond is exactly as required for a CY manifold, with
h0,0 = h3,0 = 1, h1,0 = h2,0 = 0 and with only h2,1 and h1,1 being undetermined.
In order to keep the CY condition they are the only ones who could be affected
by the twisted sectors. In [13] one can find a detailed description how to get the
twisted Hodge numbers.

For the singularities considered here there is one additional Kähler modulus
and hence (1, 1)-form for each fixed point which acts as a blow-up mode. For
other types of singularities there can be more that one (1, 1)-from and even
further (2, 1)-forms if the topology of the fixed points allows more freedom in
the choice of the complex structure.

Example: The Z2 × Z2 Orbifold

This thesis will deal with model building on the Z2 ×Z2 orbifold and its resolu-
tion. One strong reason for this explicit choice is that it has a Z2,free freely acting
symmetry which allows for new methods of symmetry breaking (see sec. 2.4).
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The point group3 contains three non-trivial elements, each of order two,

θ1 = diag(1,−1,−1) , θ2 = diag(−1, 1,−1) , θ3 = diag(−1,−1, 1) , (2.32)

which correspond to the twist vectors,

v1 = (0, 1/2,−1/2) , v2 = (−1/2, 0, 1/2) , v3 = (1/2,−1/2, 0) . (2.33)

We chose the convention that the i-th twist leaves the i-th torus invariant. Any
two of them can be chosen as generating elements and the third is the product
of them. Due to the fact that every Z2 twist acts on only two coordinates, the
sets fixed under one twist are fixed tori. They are in fact not tori because the
other Z2 folds them to a pillow T 2/Z2

∼= CP1. Let us take a closer look at e.g.
the θ1 sector where the second and third coordinates get inverted while the first
is unaffected. On each affected torus there are four points which are mapped on
themselves, either only by rotation or together with an appropriate lattice shift.
These points are

z1
i = 0 , z2

i =
τi
2
, z3

i =
1

2
, z4

i =
1 + τi

2
, i = 1 . . . 3 . (2.34)

The θ1 sector has 16 fixed tori namely the sets F1,β,γ = {z2 = zβ
2 , z3 = zγ

3},
similarly there are 16 fixed tori in the θ2 sector, F2,αγ = {z1 = zα

1 , z3 = zγ
3} and

16 in the θ3 sector, F3,αβ = {z1 = zα
1 , z2 = zβ

2 }. Here we introduced the
convention to label the fixed loci in the first, second and third torus by α, β and
γ respectively which all run from 1 to 4. Note that the points (zα

1 , z
β
2 , z

γ
3 ) are

the places where the fixed tori from different sectors intersect.
Next we want to explore the topology of the Z2 × Z2 orbifold. The only

invariant toroidal (1, 1)-forms are the dzi∧dz̄i , i = 1 . . . 3. Their Poincaré duals
are the (2, 2)-cycles which are obtained by fixing one coordinate on the bulk and
have the topology of a T 4/Z2

∼= K3. Further we find three invariant (2, 1)-forms
namely dz̄1 ∧ dz2 ∧ dz3, dz1 ∧ dz̄2 ∧ dz3 and dz1 ∧ dz2 ∧ dz̄3. The respective
complex structure moduli are the torus parameters τi. In the Z2 ×Z2 case they
are all not restricted by the point group4. We find the untwisted Hodge diamond,

hp,q
untwisted =

1
0 0

0 3 0
1 3 3 1

0 3 0
0 0

1

. (2.35)

3In fact there is only one possibility for a factorized Z2 × Z2 orbifold which is CY.
4This freedom only exists if the twist is of order N = 2 in the respective torus. For N = 3

or N = 6 we need τ = e2πi/3 and N = 4 requires τ = i, each up to PSL(2,Z) transformations.
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Now let us look at the contributions from the twisted sectors. We have 48
fixed lines with topology CP1. This leads to one additional Kähler modulus per
fixed torus which we call blow-up mode, h1,1

twisted = 48. Since on an CP1 the
complex structure is unique, there are no additional complex structure moduli,
h2,1

twisted = 0. Adding up the two sectors results in the total Hodge diamond which
we should recover after blow-up,

hp,q = hp,q
untwisted + hp,q

twisted =

1
0 0

0 51 0
1 3 3 1

0 51 0
0 0

1

. (2.36)

The Hodge diamond allows us to compute the Euler number

χ =
∑

p,q

(−1)p+qhp,q = 96 . (2.37)

2.3 Heterotic Compactification on Orbifolds

At this point we are ready to perform the compactification. This means that six
of the bosonic coordinates (Xµ , µ = 4 . . . 9) take values on the orbifold O. It is
convenient to pair up the real coordinates to complex ones Za = X2a+2 +iX2a+3,
a = 1 . . . 3. The right-movers are now compactified on a 22 dimensional space.
The simplest choice would be just to take the direct product of the orbifold and
the 16-torus. In this case there would be no gauge group breaking and no d = 4
chiral matter which contradicts our intention to find the MSSM. A more general
possibility is to take the T 16 as a fiber over the orbifold which can be realized
by embedding the space group into the automorphisms of the torus,

S → Aut(T 16) . (2.38)

Then modding out the space group results in the fiber structure,

(C3 × T 16
)

/S = O ⋉ T 16 , (2.39)

where in general the fiber degenerates at the fixed lines. The only thing that has
to be specified is the embedding (2.38). In the types of models considered here
this is done by shift vectors, θi → V I

i , and Wilson lines, ei → W I
i , which act by

translations in the gauge dimensions. In the low energy effective SYM theory
they can be interpreted as a non-trivial 1-form field A wrapping a cycle. The
shift vectors and Wilson lines are not completely arbitrary. If e.g. the twist θ is
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(a) Untwisted String

θ

e1

e2

(b) Twisted String

Figure 2.2: Strings sectors visualized on a T 2/Z2 orbifold. The grey region is
the fundamental region. The twisted string is closed by a spacegroup element
(θ, e1 + e2).

of order N then N times the corresponding shift Vθ must also be the identity
map on the T 16, i.e. a lattice vector, NV ∈ Λ16. Similarly one must restrict the
Wilson lines to take only discrete values in form of fractions of lattice vectors.

For strings living on the orbifold, new types of boundary conditions have to
be imposed. For a space group element g = (θ, niei) we find for the orbifold
coordinates Za and for the gauge coordinates XI ,

Za(τ, σ + π) = gZa(τ, σ) = θZa(τ, σ) + niei , (2.40a)

XI(σ+ + π) = gXI(σ+) = XI(σ+) + V I + L , (2.40b)

where

V I = V I
θ + niW

I
i , (2.41)

is the local shift and L ∈ Λ a lattice vector. At this point we distinguish between
the untwisted θ = 1 and the twisted θ 6= 1 sectors.

Untwisted Sector

The mode expansion in the untwisted sector is just the mode expansion on the
underlying torus. Since the radii are undetermined we do not know the masses
of the states with winding and momentum, so in general they will be massive.
Hence we only look at the unwound string and its Hilbert space. In order to
find the Hilbert space we first have to look at the transformation behavior of the
operators and states under the space group. Under a twist θ we find

|q〉 → e−2πiq·v|q〉 , (2.42a)

α̃a
n → e2πivaα̃a

n , (2.42b)

|P 〉 → e2πiP ·Vθ |P 〉 . (2.42c)
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The twist vector v = (0, v1, v2, v3) has been extended by a zero component to
be able to act on the SO(8) weights q. With this convention the zero component
corresponds to the spacetime helicity. For a state to survive the orbifolding
means that its total transformation phase must be trivial. From the d = 10
SUGRA multiplet (2.24) there remains a N = 1, d = 4 SUGRA multiplet
together with a tensor multiplet containing the model-independent axion,

|±(1, 0, 0, 0)〉
|±(1

2
, 1

2
, 1

2
, 1

2
)〉

}

⊗ αµ
−1|P = 0〉 , (2.43)

and some moduli5 multiplets which depend on the choice of the orbifold

|q〉 ⊗ αa
−1|P = 0〉 . (2.44)

In the gauge multiplet (2.26) we see that all Cartan generators

|±(1, 0, 0, 0)〉
|±(1

2
, 1

2
, 1

2
, 1

2
)〉

}

⊗ αI
−1|P = 0〉 , (2.45)

still exist so we have not reduced the rank of the gauge group, which is always
the case for Abelian embeddings. The non-Abelian part of the d = 4 gauge
group G4 comes from the roots P 6= 0 which satisfy

P · V = 0 mod 1 , P ·W = 0 mod 1 , (2.46)

for all shifts V and Wilson lines W :

|±(1, 0, 0, 0)〉
|±(1

2
, 1

2
, 1

2
, 1

2
)〉

}

⊗ |P 〉 . (2.47)

We see that the states (2.45) and (2.47) form complete vector multiplets as
required for a SYM theory. But there can be more states of the form |q〉 ⊗ |P 〉
which do not satisfy (2.46) but

q · v − P · V = 0 mod 1 , (2.48)

for all local shifts V with the associated twist vectors v. These states are called
untwisted matter since they build d = 4 chiral multiplets and are charged under
the gauge group. It turns out that these multiplets appear in C-conjugate pairs
and hence loose their property of being chiral.

5These are actually the untwisted moduli. The twisted moduli or blow-up modes become
visible in blow-up.
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Twisted Sector

In the twisted sector the string is closed by a space group element which has
a non-trivial twist, θ 6= 1. On the one hand there are space group elements
which act freely6. The corresponding states will again in general be massive
(as for the untwisted wound string) so they will not be explored. The other
elements g = (θ, niei) have fixed points or fixed tori. To satisfy (2.40a), the
mode expansion around the fixed point must consist of fractional modes,

Za(τ, σ) = za
fix +

i

2

∑

n∈Z( αµ
n−va

n− va
e−2i(n−va)(τ−σ) +

α̃µ
n+va

n+ va
e−2i(n+va)(τ+σ)

)

. (2.49)

As a consequence the right-moving SO(8) weights q get shifted

qa
sh = qa + va . (2.50)

At the same time (2.40b) leads to a shift of the momentum around the 16-torus

Psh = P + V , (2.51)

where V is the local shift (2.41). Also the normal ordering constant in the zero
mode of the energy momentum tensor will be shifted by

δc =
3
∑

a=1

va (1 − va) , (2.52)

which modifies the mass equations

M2
R

8
=
q2
sh

2
+ δc− 1

2
, (2.53a)

M2
L

8
=
P 2

sh

2
+ Ñ + δc− 1 . (2.53b)

The twisted massless Hilbert space is again defined by a projection. The states
and operators in the twisted sector transform under the space group the same
way as (2.42), but replacing q → qsh, P → Psh and the integer oscillators by
fractional ones. Of all massless states only those which transform trivially under
the space group appear in the on-shell Hilbert space. When we work on the
covering space C3, these states are usually superpositions of states on all fixed
points which are mapped onto each other by S. It turns out that all states in the
twisted sector appear in complete representations of the d = 4 gauge group G4

in form of N = 1 chiral multiplets. That is why they are called twisted matter.
Since the states are trapped in the fixed points it seems reasonable to assume
that the blow-up mode is among them. We will find out that some twisted states
can indeed act as a blow-up modes.

6Such elements have a shift in a torus which they do not twist.
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Modular Invariance

The choice of shift vectors V and Wilson lines Wi is reduced by some restrictions.
We already know that they must be integer multiples of some fraction of the
E8 × E8 root lattice, e.g. for a ZN × ZM orbifold

V ∈ 1

N
Λ16 , (2.54a)

V ′ ∈ 1

M
Λ16 , (2.54b)

Wi ∈
1

Ni

Λ16 . (2.54c)

Ni is the order of the i-th Wilson line and is determined by the point group. But
there are further restrictions which come from one-loop modular invariance. A
one-loop diagram in closed string theory is a torus and depends on the modular
parameter τ . It is well known that a PSL(2,Z) transformation

τ → aτ + b

cτ + d
,

(

a b
c d

)

∈ SL(2,Z) , (2.55)

maps a torus onto itself so the amplitude should be invariant under such trans-
formations. From this it follows that shift vectors and Wilson lines must satisfy
a set of conditions. For a ZN × ZM orbifold they read

N
(

V 2 − v2
)

≡ 0 mod 2 , (2.56a)

M
(

V ′2 − v′
2
)

≡ 0 mod 2 , (2.56b)

gcd(N,M) (V · V ′ − v · v′) ≡ 0 mod 2 , (2.56c)

Ni (Wi · V ) ≡ 0 mod 2 , (2.56d)

Ni (Wi · V ′) ≡ 0 mod 2 , (2.56e)

Ni

(

W 2
i

)

≡ 0 mod 2 , (2.56f)

gcd(Ni, Nj) (Wi ·Wj) ≡ 0 mod 2 . (2.56g)

Here Ni is the order of the i-th Wilson line, i.e. Ni ·Wi ∈ Λ16 (no sum over i).

Brother Models

Now we know that an orbifold model is determined by a set of shift vectors and
Wilson lines which both are rational multiples of E8 ×E8 lattice vectors. At this
point one can ask the question what happens if one adds a lattice vector to one
of them while respecting (2.56). This leads to the concept of brother models and
was studied in [21] for ZN × ZM orbifolds. First one finds that the untwisted
sector and in particular the gauge group stays the same. Also the choice of six-
dimensional twisted states remains but the transformation phase (2.42) changes
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τ τ τ

τ1 τ2 τ3

1 1 1

× ×

Figure 2.3: Z2,free shift on the Z2 × Z2 orbifold. The fundamental (grey) region
is now one eighth of the torus. The upper and lower fixed loci are mapped onto
each other simultaneously.

and hence the set of states which survive the projection. Note that the addition
of double lattice vectors does not change the transformation phase. Hence the
number of brother models is finite. One can go one step further and try to
add lattice vectors to each local twist separately such that it satisfies modular
invariance. We call such models grandchildren or local orbifolds. It is clear that
one has many more possibilities for grandchildren than for brothers. It seems
that they are needed for an identification between orbifold and resolved models.

2.4 Z2,free Shift on the Z2 × Z2 Orbifold

As already mentioned, this thesis will deal with model building on the Z2 × Z2

orbifold as well as its blown up version. Let us therefore shortly apply the
analysis of sec. 2.3 to this particular case and fix the conventions. We need two
independent shift vectors, each of order two, which we call V1 and V2. Their
sum is called V3 = V1 + V2 in correspondence with (2.32). The identities like
(θ2, e1)

2 = 1 imply that all Wilson lines Wi belonging to the Λ6 lattice base vector
ei are also of order Ni = 2, and it turns out that they are all independent7. So
we need in total eight half E8 × E8 lattice vectors to specify one model.

The Z2 × Z2 orbifold possesses a lot of symmetries. First all twists are
equivalent and permuting them corresponds to permutations of the three T 2’s.
Further one can see by modular transformations that all fixed lines for one twist
are of the same type so the following analysis holds for all 48 twisted sectors.
In each of them the vacuum energy shift (2.52) has the value δc = 1/4. Now
(2.53a) for massless states reads q2

sh = 1/2, and together with (2.50) implies that
qsh is of the form ±(1

2
, 1

2
, 0, 0). A closer analysis reveals that each state appears

as a chiral multiplet and has four degrees of freedom. The masslessness of the
left-mover (2.53b) can be ensured in two ways. Either we choose V 2

sh = 3/2 and
Ñ = 0, or we excite one α̃a

−1/2 oscillator and have V 2
sh = 1/2. In sec. 4.1 we will

7For higher order twist the Wilson lines must necessarily be equal or must even vanish.
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find out that only the states without oscillator are blow-up mode candidates.Z2,free Symmetry

The Z2 × Z2 orbifold possesses an additional Z2,free symmetry. Free means that
it has no new fixed points. It acts on the orbifold coordinates by a shift about
a half Λ6 lattice vector

τ : za → za +
τa

2
, τ =

1

2
(e2 + e4 + e6) . (2.57)Z2,free and other Z2 shift symmetries are studied in [29], but Z2,free is the only

one which does not introduce new fixed points. As a consequence, a curve which
closes by the action of τ cannot be shrunk to a point and the manifold obtained by
modding out Z2,free has a non-trivial fundamental group, π1(O/Z2,free) = Z2,free.
This allows us to wrap a Wilson line W around this cycle so that we have a
new possibility for gauge symmetry breaking. But in contrast to the local shifts
which in blow-up turn out to be caused by localized fluxes at the resolved fixed
points, W is a pure and topologically stable Wilson line. The symmetry breaking
by such Wilson lines does not lead to new massive U(1) factors and hence it is
a good candidate for breaking the SU(5) GUT to the standard model while
preserving the hypercharge, see sec. 4.2.

The new Wilson line can again be implemented by embedding Z2,free into the
gauge transformations and modding it out. Now τ can be expressed in terms
of half lattice vectors so the requirement to preserve the symmetry in the gauge
embedding poses relations on the Wilson lines W2,W4,W6 and W . The identity
τ ◦ θi ◦ τ ◦ θi = e2i implies

2W ≡W2i i = 1, 2, 3 , (2.58)

which leads to

W2 ≡W4 ≡W6 , (2.59)

and which says that W is of order 4. In this context “≡” denotes equality up
to an E8 ×E8 lattice vector. As for the shift vectors and the other Wilson lines,
there are constraints on W imposed by modular invariance of the one-loop string
amplitude,

2W 2 = 0 mod 1 , (2.60a)

4W · Vi = 0 mod 1 , (2.60b)

4W ·Wi = 0 mod 1 . (2.60c)
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Their explicit derivation will be presented in [32]. Z2,free maps two fixed points
onto each other. Using the notation introduced in sec. 2.2 the mapping is

F1,βγ ↔ F1,β′γ′ , (2.61a)

F2,αγ ↔ F2,α′γ′ , (2.61b)

F3,αβ ↔ F3,α′β′ , (2.61c)

with

α, β, γ α′, β ′, γ′

1 2
2 1
3 4
4 3

. (2.62)

The symmetry requires that the twisted spectra localized at these points must
be identified which can be ensured by condition (2.59) when we require equality
without addition of lattice vectors. As a result the multiplicities in the twisted
spectrum will be divided by two when modding out Z2,free.

Let us take a look at the Hodge diamond. All untwisted forms are invariant
unter Z2,free so the untwisted Hodge diamond (2.35) stays the same. In particular
the holomorphic 3-form Ω survives which tells us that the manifold is still CY
after modding out. In the twisted sectors the number of fixed lines is reduced by
half, i.e. we are left with 24 fixed lines, 8 for each of the three twists. Since the
geometry of the fixed tori is untouched, the twisted Hodge diamond will also be
divided by two. We get

hp,q =

1
0 0

0 27 0
1 3 3 1

0 27 0
0 0

1

, (2.63)

and as a direct consequence

χ = 48 . (2.64)

2.5 A 6-Generation GUT on Z2 × Z2 Orbifold

Our intention is of course to find a heterotic model which comes as close as
possible to the MSSM. The highest priority is to reproduce the gauge group
SU(3)C × SU(2)L ×U(1)Y and the chiral spectrum with three families of quarks
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and leptons and a pair of Higgses. One promising possibility is to have a SU(5)
GUT with matter in the appropriate representations which is broken at a scale
of MGUT ∼ 1016 GeV. We will follow this path and first try to find a GUT model
on the Z2 × Z2 orbifold and then break it down to the SM via the Wilson line
that comes up by modding out Z2,free. But doing so, the multiplicity of twisted
matter will be halved, so we need a GUT model with six twisted generations
since the untwisted sector is not chiral. Z2,free also requires (2.59) to be satisfied.
Using [33] we find that there are only few inequivalent models satisfying these
constraints. One of them will be presented here. Its phenomenological details
are about to be published in [31].
The shift vectors and Wilson lines of this model are

V1 =

(

1

2
,
1

2
, 2, 0, 0, 0, 1,−1, 0, 1, 1, 0, 1, 0, 0,−1

)

, (2.65a)

V2 =

(

5

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,

1

2
,
1

2
, 0, 0, 0, 0, 0, 4

)

, (2.65b)

W1 =
(

016
)

(2.65c)

W3 =

(

1,−1, 0,
1

2
,
1

2
,
1

2
,
1

2
, 1,

1

4
,
1

4
,
1

4
,
5

4
,−3

4
,
1

4
,−3

4
,
1

4

)

, (2.65d)

W5 =

(

−1

2
,
1

2
,−1

2
,−1

2
,−1

2
,
1

2
,
1

2
,
1

2
,

1

2
,
1

2
, 0, 0, 0, 0,−1

2
,−1

2

)

, (2.65e)

W2 = W4 = W6

=

(

−1,−1, 0 − 1,−1

2
,−1

2
,−1

2
,−1

2
, −1

4
,
3

4
,
5

4
,
5

4
,
1

4
,
1

4
,
1

4
,
1

4

)

.
(2.65f)

The non-Abelian part of the gauge group of this model is SU(5)×SU(4)×SU(4)
where the SU(5) arises from the first E8. Since we have no rank reduction, there
are six U(1) factors, one of which is anomalous,

tanom =

(

−1,−1,−2,−1, 1, 1, 1, 2, −1

2
,−1

2
, 0, 0, 0, 0,−1

2
,−1

2

)

. (2.66)

A summary of the chiral spectrum is shown in tab. 2.1. For more details see
appendix B. We observe that the multiplicities in the twisted sectors are all
even. The multiplicities in the θ2 and θ3 sectors are actually multiples of four
which follows from the vanishing of the first Wilson line. In total we have six
10’s, nine 5’s and fifteen 5̄’s which guarantees non-Abelian anomaly freedom.
The forth-order Wilson line W is chosen to be

W =

(

−1

2
,−1

2
, 0 − 1

2
,−1

4
,−1

4
,−1

4
,−1

4
, −1

8
,
3

8
,
5

8
,
5

8
,
1

8
,
1

8
,
1

8
,
1

8

)

, (2.67)
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(a) Untwisted Sec-
tor

# irrep
6 (1, 1, 1)
3 (5, 1, 1)
3 (5̄, 1, 1)

(b) θ1 Twisted Sec-
tor

# irrep
2 (5̄, 1, 1)
18 (1, 1, 1)
2 (10, 1, 1)
2 (1, 6, 1)
4 (1, 4̄, 1)
4 (1, 4, 1)
2 (1, 1, 4)
4 (5, 1, 1)
2 (1, 1, 4̄)

(c) θ2 Twisted Sec-
tor

# irrep
4 (5, 1, 1)
12 (1, 1, 1)
4 (1, 4̄, 1)
4 (1, 1, 4̄)
4 (1, 1, 4)

(d) θ3 Twisted Sec-
tor

# irrep
4 (5, 1, 1)
16 (1, 1, 1)
4 (1, 4, 1)
4 (10, 1, 1)
4 (5̄, 1, 1)

Table 2.1: Summary of the orbifold model matter spectrum.

i.e. W = W2/2. It breaks SU(5) → SU(3)C × SU(2)L × U(1)Y with the hyper-
charge generator

tY =

(

0, 0,
1

2
,
1

2
,
1

6
,
1

6
,
1

6
,
1

2
, 08

)

. (2.68)

The 10’s and six of the 5̄’s will then become three families of quarks, leptons
and their superpartners. Further two of the 5’s and 5̄’s will result in a pair of
up- and down-Higgses. The remaining ones should decouple from the low energy
spectrum by getting high mass terms. The hidden sector gauge group is broken
to SU(3)×SU(2)×SU(2)×U(1)4 which leaves the possibility for SUSY breaking
at low scales by gaugino condensation. For more details see [31].
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Chapter 3

Blow-Up of Orbifold Singularities

In the last chapter we have seen how the spectra of the low energy effective field
theories are obtained from the heterotic orbifold construction. In this theory one
has to construct the superpotential which in general will give vacuum expectation
values (vevs) to some fields. Due to the appearance of the anomalous U(1)anom,
the induced Fayet–Iliopoulos (FI) term requires some charged fields to attain a
vev in order to preserve N = 1 supersymmetry. These fields must be spacetime
scalars and charged under U(1)anom, so most of them are found in the twisted
sectors. If they get a non-trivial vev, this has a backreaction on the geometry
and results in a resolution of the fixed point. It follows that the curvature
which was localized in the fixed point is now smoothed out and we obtain a
differentiable CY manifold. We want do describe this manifold and explore its
geometrical and topological properties. The mathematical tool which we use
to describe the blown up singularity is called toric geometry and belongs to
the field of algebraic geometry. Toric means that it deals with spaces, so-called
toric varieties, which contain an algebraic torus (C∗)n as a dense open subset,
i.e. (partial) compactifications of them. A mathematical introduction is given
in [15]. Toric geometry will allow us to take a singularity of the type Cn/P
where P = ZN or P = ZN × ZM , remove the fixed points or lines and replace
them with smooth spaces of codimension two. The orbifold coordinates are not
able to parameterize these smooth spaces, so the idea of toric geometry is to
construct new coordinates and mod out a continuous group action to keep the
dimension. This way a topological structure becomes visible to which we had no
access in the singular limit. A complete orbifold can then be blown up by cutting
out each singularity, blowing it up and gluing the resolved spaces together, see
fig. 3.1.

25
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Figure 3.1: To blow up an orbifold we first cut out neighborhoods around the
singularities then replace the singular point by a smooth space and finally glue
the resolved spaces together.

3.1 Toric Geometry

We want to describe the concepts and methods of toric geometry by the illus-
trative example of complex projective space CPn. CPn is a compactification
of Cn and it can be obtained by adding a lower dimensional space, a CPn−1,
which glues the boundary of Cn together. But the compactification can be done
in many other ways or one can perform just a partial compactification. Such
possibilities can be described by toric geometry. Here we will present the homo-
geneous coordinate construction of the toric variety since it is more illustrative.

The starting point of such a description is the toric diagram. It consists
of a set of points in an n dimensional lattice isomorphic to Zn, where n is the
complex dimension of the variety. ForCPn (fig. 3.2) we choose the set V = {vi},
i = 1 . . . n+ 1 given by

vi = (0, . . . , 1
↑

i-th

, . . . , 0) , i = 1 . . . n (3.1a)

vn+1 = (−1, . . . ,−1) . (3.1b)

To each of these vectors we associate a homogeneous coordinate zi so we start
with a Cn+1.

The next step is to triangulate the toric diagram. This means we have to
divide the diagram into a set of convex cones1 spanned by subsets of V such that
the intersection of two cones of same dimension is a lower dimensional cone. This
set of cones is called fan. The triangulation is not always unique and we will see
that different triangulations lead to different topologies since the cones in the
fan correspond to non-trivial cycles on the variety.

Now we choose the exclusion set Z ∈ Cn+1 which contains all simultaneous
zero loci of all combinations of coordinates zi such that the associated vectors vi

1A cone spanned by a set of vectors {φi} is the set σ =
{
∑

αiφi

∣

∣αi ≥ 0
}

. It is convex if
ω ∈ σ − {0} implies −ω 6∈ σ.
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(1, 0)

(0, 1)

(−1,−1)

Figure 3.2: Toric Diagram of a CP2

do not span a cone in the fan. For the CPn one can easily see that there exists
only one triangulation in which any proper subset V ′ $ V spans a convex cone
whereas the cone spanned by V is not convex. Hence the exclusion set is

Z = {z1 = . . . = zn+1 = 0} . (3.2)

This set will be subtracted in order to avoid singularities.
At this point we still have more complex coordinates than the dimension of

the variety we wish to describe. Therefore the final step is to find a (C∗)r action
and reduce the dimension by modding it out. Here r is the difference between
the number of homogeneous coordinates and the desired dimension, r = #V −n.
In the toric diagram we have n + r vectors in a n dimensional lattice so there
are r independent linear equivalences of the form

∑

i

αk
i vi = 0 , k = 1 . . . r , (3.3)

where the vectors αk are linearly independent. This equivalences can now be
translated into a (C∗)r action on the homogeneous coordinates

zi
λ−→

r
∏

k=1

(

λk
)αk

i · zi . (3.4)

One can easily see that the (C∗)r action only depends on the space spanned by
the αk and not on the particular choice. Hence it is uniquely determined by the
toric diagram. For the CPn we have r = 1, the only linear equivalence reads
∑

i vi = 0 and thus the C∗ acts as zi → λzi. This way we found our standard
recipe to construct a CPnCPn =

Cn+1 − {(0, . . . , 0)}C∗
. (3.5)
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For a general toric variety it reads

V =
Cn+r − Z

(C∗)r . (3.6)

One can construct inhomogeneous coordinates which are invariant under (3.4)
out of the homogeneous ones. One quickly finds the following inhomogeneous
coordinates

Zk =
∏

i

z
(vi)k

i , k = 1 . . . n . (3.7)

Furthermore, all monomials in the Zk are allowed as inhomogeneous coordinates.
A set of n inhomogeneous coordinates can only describe a subset of the variety
and we need several such sets to cover the whole variety just in the sense of a
manifold.

3.1.1 Divisors and Intersections

Now that we have created the variety we can start studying its topology. First
one defines the divisors2 as the zero loci of the homogeneous coordinates,

Di = {zi = 0} . (3.8)

They are of complex codimension one and they are non-trivial cycles in the
Hn−1,n−1 homology group. By Poincaré duality we can associate a (1, 1)-form3

to each of the divisors which we will by abuse of notation also call Di. It should
always be clear from the context whether we use the divisor as a cycle or as a
form.

There is a naturally defined product on the space of divisors: For k divisors
Di1 , . . . , Dik we define

Di1 . . .Dik = Di1 ∩ . . . ∩Dik ∈ Hn−k,n−k . (3.9)

In form language this product turns out to be the wedge product

Di1 . . .Dik = Di1 ∧ . . . ∧Dik ∈ Hk,k . (3.10)

The product is not always well-defined by (3.9) for cycles since due to the orien-
tation a sign can appear and since it does not define self-intersections. But one
can always turn to forms to avoid these problems. A product of n divisors is a
finite set of points or as its Poincaré dual a multiple of the volume form. In abuse

2Generally, zero loci of polynomials in homogeneous coordinates are called divisors.
3These forms can also be defined as the first Chern class of the line bundle defined by the

transition functions of the polynomial of which Di is the zero locus.
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of notation we will denote the number of these points with the sign encoding
relative orientations by such products. This number, which is to the integral of
the dual (n, n)-form over the whole variety, is called intersection number,

Di1 . . .Din =

∫

V

Di1 ∧ . . . ∧Din = #Di1 ∩ . . . ∩Din . (3.11)

Let us consider the case when all divisors in such a product are non-compact
which can happen on a non-compact variety. If the cycles have an intersection
point it can be pushed to infinity and away off the variety. In such a case the
intersection number will turn out to be a rational number. In the other case,
when at least one divisor is compact, the intersection numbers are all integers.

The compactness of a divisor can be easily checked from the toric diagram: If
and only if the corresponding vector is surrounded by cones, i.e. if it is not at the
boundary of the diagram, the divisor is compact. Hence a variety whose cones
cover the whole lattice is compact, and otherwise it is not. Now all compact
intersection numbers of distinct divisors can be read off from the triangulated
toric diagram. If the associated vectors span a cone in the fan the divisors
intersect in exactly one point. This is no surprise since the exceptional set
contains exactly those points in which divisors not spanning a cone in the fan
could have intersected. If the cone is not divisible into two cones but does not
belong to the fan or if the n vectors are linearly dependent the divisors do not
intersect.

The next step is to obtain all possible intersection numbers, in particular
those including self intersection. To this end, we can make use of n linear
equivalences between the divisors,

∑

i

(vi)k Di ∼ 0 , k = 1 . . . n . (3.12)

Here “∼” means equality up to a boundary or an exact form, respectively. These
linear equivalences together with the basic intersection numbers allow us to com-
pute the remaining ones. How this works will be described in more detail for theZ2 × Z2 orbifold in sec. 3.3. To sum up, we have found #V = n + r non-trivial
(1, 1)-forms and n linear equivalence relations so only r of them are independent
and we find h1,1 = r.

Chern Class

Much topological information is encoded in the Chern class of a complex man-
ifold. The CY condition can be formulated as the vanishing of the first Chern
class, c1(CY) = 0. Furthermore, the Euler characteristic of a complex n-fold can
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D1

D2

(a) C2/Z2

D1

D2

E

(b) Res(C2/Z2)

Figure 3.3: Toric diagram of C2/Z2 and its resolution. It is convenient to label
the vectors with the divisors.

be obtained by

χ =

∫

Xn

cn . (3.13)

For a toric variety the total Chern class is expressed by the divisors (as (1, 1)-
forms)

c(V) =
∏

i

(1 +Di) . (3.14)

This can now be used to extract4 the single Chern classes, e.g. the first one is
c1(V) =

∑

iDi.

3.2 Resolution of non-Compact Singularities

We want to use toric geometry to blow up the singularities of an orbifold. In
a few particular cases [23, 26, 27] the blow-up can be done more explicitly by
constructing a Kähler metric on the resolved space. This supports non-Abelian
bundles and hence more possibilities for gauge symmetry breaking. For the
remaining cases like the Z2 × Z2 orbifold we must arrange the model building
by the topological data. For isolated singularities this is done in [24].

3.2.1 C2/Z2

We start with the blow up of a single C2/Z2 singularity. It is the simplest type of
singularity with SU(N) holonomy and hence very illustrative. Furthermore, all

4The n-th Chern class is the (n, n)-form part of the total Chern class.
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singularities of the Z2×Z2 orbifold are of this type once we fix the coordinate on
the fixed torus. The general procedure how to blow up any orbifold singularity
will be depicted in sec. 3.2.2.

The toric diagram for C2/Z2, fig. 3.3(a), consists of the vectors

u1 = (1, 0) , u2 = (1, 2) . (3.15)

There are only two homogeneous coordinates and hence no C∗ action to mod out
so one would naively say that we describe aC2. But a look at the inhomogeneous
coordinates Z1 = z2

1 and Z2 = z1z2 reveals that we are describing a C2/Z2 withZ2 action (z1, z2) → (−z1,−z2) since Z1 and Z2 describe a basis for invariant
monomials on it. Generally a toric variety is non-singular if and only if the
vectors in the toric diagram span the whole lattice by integer linear combinations
which is clearly not the case here.

Resolution

Hence we need another divisor to make the variety smooth. This divisor is called
exceptional divisor E and the corresponding vector is w = (1, 1), see fig. 3.3(b).
The homogeneous coordinate is denoted by x. In two dimensions the triangula-
tion is always unique. Here the sets of vectors that do not span cones in the fan
are {u1, u2} and {u1, u2, w} thus we find the exclusion set Z = {z1 = z2 = 0}.

The toric vectors are linearly dependent,

u1 + u2 − 2w = 0 , (3.16)

so we find the C∗ action

(z1, z2, x) →
(

λz1, λz2, λ
−2x
)

, (3.17)

which leads us to the definition of the variety

V =
C3 − ZC∗

. (3.18)

Let us explore the geometry of the variety. First we look at the coordinate
patch defined by U = {x 6= 0}. Here we can use the C∗ action (3.17) to fix the
value of x to x = 1 by choosing λ = ±√

x. We see that there is a remainingZ2 ambiguity which further identifies the points (z1, z2) and (−z1,−z2). Taking
into account the exceptional set we find that U is a C2/Z2 where the singularity
{z1 = z2 = 0} has been removed. The other part of the variety is the exceptional
divisor E = {x = 0}. The remaining C∗ action on z1 and z2 shows that E is aCP1 . This CP1 now replaces the singularity which can be seen by constructing
inhomogeneous coordinates Zi = xz2

i and letting Zi → 0 which corresponds to
x→ 0. Hence the singularity has been resolved,

V = U ∪E = Res(C2/Z2) . (3.19)
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D1 D2

D3

(a) C3/Z2 × Z2.

D1 D2

D3

E1
E2

E3

(b) Res(C3/Z2 ×Z2), untriagulated

Figure 3.4: Projected toric diagrams. The figure shows the x = 1 plane of the
unprojected diagram.

The linear equivalences (3.12) can be written as 2Di+E ∼ 0, i = 1, 2 and we read
off the basic intersection numbers DiE = 1, i = 1, 2. This immediately leads to
the remaining intersection numbers E2 = −2, DiDj = −1/2. Note that the Di

are not compact and hence their intersection number is fractional. Furthermore,
the intersection D1D2 should vanish due to the toric diagram but it does not
because of non-compactness. In the compact case this issue is resolved by the
presence of additional divisors.

The first Chern class (3.14) is c1 = E +D1 +D2 and the linear equivalences
show that it vanishes. Thus our resolved space is still a CY. Using the intersection
numbers we can integrate the second Chern class χ =

∫

c2 = D1D2 + D1E +
D2E = 3/2. Gluing 16 such singularities together results in a compact T 4/Z2

with Euler number χ = 16 · 3/2 = 24 which is the Euler number of a K3 as
expected.

3.2.2 C3/Z2 × Z2

In the T 6/Z2 × Z2 orbifold we deal with 48 fixed lines which meet in the 64
points (zα

1 , z
β
2 , z

γ
3 ), α, β, γ = 1 . . . 4. A neighborhood of such a point looks like

a C3/Z2 × Z2 so these are the singular spaces which we want to resolve. The
blow-up procedure of such a singularity always starts with the construction of
the toric diagram. We first choose homogeneous coordinates zi, i = 1 . . . 3 on the
covering space C3 and associate a vector ui to each of them. The vectors must
be chosen such that the monomials

∏

i z
(ui)k

i are invariant under the point group
and are an integer basis of all invariant monomials. For a singularity with SU(3)
holonomy the monomial z1z2z3 is always invariant so we can choose (ui)1 ≡ 1.
This means the toric diagram lies in a plane and leads us to the projected toric
diagram which is easier to visualize. For the Z2×Z2 singularity with point group
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(2.32) we take the vectors

u1 = (1, 0, 0) , u2 = (1, 2, 0) , u3 = (1, 0, 2) . (3.20)

The respective divisors, called ordinary divisors, are labeled by Di, see fig. 3.4(a).
The next step is to resolve the orbifold. We add one exceptional divisor Ei for
each point group element θi = exp{2πi diag (v1

i , v
2
i , v

3
i )} with 0 ≤ va

i < 1 5 and
∑

a v
a
i = 1. The associated toric vector is

wi =
∑

a

va
i ua . (3.21)

For the Z2×Z2 twist all non-trivial point group elements satisfy these conditions.
Thus we add the three vectors

w1 = (1, 1, 1) , w2 = (1, 0, 1) , w3 = (1, 1, 0) . (3.22)

These vectors lie in the same plane as the ui, so we can draw them into the
projected toric diagram (fig. 3.4(b)). We recover three times the structure of
Res(C2/Z2) (fig. 3.3(b)) which is one exceptional divisor between two ordinary
divisors. Note that the exceptional divisors are not compact. The respective
homogeneous coordinates are denoted by xi.

Now we must triangulate the toric diagram which is not unique in this case.
There are four possible triangulations denoted by “symm” (for symmetric), “E1”,
“E2” and “E3”, see fig. 3.5. From the triangulation we can read of the exclusion
set

Z“symm” ={z1 = z2 = 0} ∪ {z1 = z3 = 0} ∪ {z2 = z3 = 0}
∪ {z1 = x1 = 0} ∪ {z2 = x2 = 0} ∪ {z3 = x3 = 0} , (3.23a)

Z“E1” ={z1 = z2 = 0} ∪ {z1 = z3 = 0} ∪ {z2 = z3 = 0}
∪ {x2 = x3 = 0} ∪ {z2 = x2 = 0} ∪ {z3 = x3 = 0} , (3.23b)

Z“E2” ={z1 = z2 = 0} ∪ {z1 = z3 = 0} ∪ {z2 = z3 = 0}
∪ {z1 = x1 = 0} ∪ {x1 = x3 = 0} ∪ {z3 = x3 = 0} , (3.23c)

Z“E3” ={z1 = z2 = 0} ∪ {z1 = z3 = 0} ∪ {z2 = z3 = 0}
∪ {z1 = x1 = 0} ∪ {z2 = x2 = 0} ∪ {x1 = x2 = 0} . (3.23d)

The six vectors ui, wi obey three linear dependences which are exactly the
definitions of the exceptional vectors (3.21). They read

u2 + u3 − 2w1 = 0 , (3.24a)

u3 + u1 − 2w2 = 0 , (3.24b)

u1 + u2 − 2w3 = 0 , (3.24c)

5This can always be achieved by adding integers.
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D1 D2

D3

E1
E2

E3

(a) “symm”

D1 D2

D3

E1
E2

E3

(b) “E1”

D1 D2

D3

E1
E2

E3

(c) “E2”

D1 D2

D3

E1
E2

E3

(d) “E3”

Figure 3.5: Different triangulations of Res(C3/Z2 × Z2)
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triangulation “symm” “E1” “E2” “E3”

E1E2E3 1 0 0 0
E1E

2
2 -1 -2 0 0

E1E
2
3 -1 -2 0 0

E2
1E2 -1 0 -2 0

E2E
2
3 -1 0 -2 0

E2
1E3 -1 0 0 -2

E2
2E3 -1 0 0 -2
E3

1 1 0 2 2
E3

2 1 2 0 2
E3

3 1 2 2 0

Table 3.1: Intersection numbers of exceptional divisors for C3/Z2 × Z2.

and lead to the (C∗)3 action

(z1, z2, z3, x1, x2, x3)
(λ1,λ2,λ3)−−−−−→

(

λ2λ3z1, λ1λ3z2, λ1λ2z3,
x1

λ2
1

,
x2

λ2
2

,
x3

λ2
3

)

. (3.25)

Now we can define the resolved space

Res(C3/Z2 × Z2)triang =
C6 − Ztriang

(C∗)3
, (3.26)

with triang ∈ {“symm”,“E1”,“E2”,“E3”}. There are three linear dependence
relations (3.12),

D1 +D2 +D3 + E1 + E2 + E3 ∼ 0 , (3.27a)

2D2 + E1 + E3 ∼ 0 , (3.27b)

2D3 + E1 + E2 ∼ 0 . (3.27c)

It is convenient to replace the first one to have them in a more symmetric manner,

2D1 + E2 + E3 ∼ 0 . (3.27d)

They can be used to compute all intersection numbers from the basic ones. The
results for the exceptional divisors are listed in table 3.1. Intersection numbers
containing ordinary divisors can be calculated using (3.27). We observe:

• The different triangulations will result in different intersection numbers
and hence in different topologies, which in blow-down become the same
singularity. At this point it is not clear which triangulation we should
choose in blow-up. In sec. 3.4 we will see that the choice of triangulation
depends on the Kähler moduli and that flop transitions between them are
possible.
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• The permutation symmetry between the complex coordinates zi → zσ(i) is
still there when we also permute the exceptional divisors Ei → Eσ(i) and
the triangulation “Ei” → “Eσ(i)”. The symmetric triangulation is mapped
to itself.

• The lines between the divisors correspond to the simultaneous zero loci
of coordinates which are not excluded by the exceptional set (3.23). On
the variety this means that these divisors intersect in a (1, 1)-cycle. Thus
varieties of different triangulations contain different complex curves. We
also know that triangles in the toric diagram are points ((0, 0)-cycles) on
the variety in which the divisors at the corners intersect. Generally the
real dimension of the cones is the complex codimension of the associated
cycles.

• The first Chern class c1 =
∑

iDi +
∑

iEi vanishes due to (3.27a). Once
again we see that the CY condition is equivalent to the toric vectors lying
in a plane.

• Using (3.27) we can rewrite the third Chern class in terms of the exceptional
divisors only,

c3 =
1

8
(2E3

1 + 2E3
2 + 2E3

3 − E2
1E2

− E2
1E3 − E2

2E1 − E2
2E3 − E2

3E1 − E2
3E2) .

(3.28)

Although the single terms are triangulation-dependent the value of the
integral of c3 over the variety turns out to be universal. We find

∫

c3 = 3/2
which fits exactly with the fact that 64 such varieties can be glued to a
resolution of the Z2 × Z2 orbifold with χ = 96 (2.37).

3.3 Resolution of Compact T 6/Z2 × Z2 Orbifold

In the last section we saw how to blow up singularities that appear in toroidal
orbifolds. Our intention is of course to have a description of a resolved version
of the whole compact orbifold. Although this can not be done by a single toric
description we can nevertheless use the terminology and the results from the
non compact resolved singularity. The blow-up of many compact orbifolds is
described in [22]. In [28] the resolution of the Z6−II orbifold and heterotic model
building are studied.

Divisors

In the local case we had three ordinary divisors Di = {zi = 0}. In blow-down
a product of two such divisors was a fixed line and a product of three was the
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point in which they intersect. In the global orbifold case we have now in each
torus four loci in which the fixed lines sit, see fig. 2.1. Hence we define four
ordinary divisors on each torus, i.e. 12 in total, in the following way:

D1,α = {z1 = zα
1 } , D2,β =

{

z2 = zβ
2

}

, D3,γ = {z3 = zγ
3} . (3.29)

The labels α, β, γ are used in the same manner as in (2.34). As in the non-
compact case we can recover a fixed torus by taking a product of two of them.

F1,βγ = D2,βD3,γ , F2,αγ = D1,αD3,γ , F3,αβ = D1,αD2,β . (3.30)

Each of these 48 fixed lines is a C2/Z2 singularity times a T 2/Z2 so to blow
them up we replace them by 48 exceptional divisors which lie “between” the
ordinary divisors, 16 in the θ1 sector, D2,β E1,βγ D3,γ

, 16 in the θ2 sector,

D1,α E2,αγ D3,γ
, and 16 in the θ3 sector, D1,α E3,αβ D2,β

. These
divisors are all non-trivial (2, 2)-cycles or closed (1, 1)-forms.

On the orbifold there are three more (2, 2)-cycles which are obtained by
fixing one coordinate on the bulk. On the covering torus we define these so
called inherited divisors in a Z2 × Z2 invariant way

Ri = {zi = zconst} ∪ {zi = −zconst} , i = 1 . . . 3 . (3.31)

In blow-down the inherited divisors are T 4/Z2 orbifolds so in blow-up we expect
them to be smooth K3’s. The Poincaré duals are the forms dzi ∧ dz̄i. When
we move zconst towards a fix locus, zconst → zδ

i , we find the linear equivalence
relation for all ordinary divisors valid at the orbifold point,

2Di,δ ∼ Ri , i = 1, 2, 3 , δ = 1 . . . 4 . (3.32)

In blow-up we have to take into account that each ordinary divisor is locally
equivalent to exceptional divisors (3.27) so we find the blow-up linear equivalence
relations,

2D1,α +
∑

β

E3,αβ +
∑

γ

E2,αγ ∼ R1 , (3.33a)

2D2,β +
∑

α

E3,αβ +
∑

γ

E1,βγ ∼ R2 , (3.33b)

2D3,γ +
∑

α

E2,αγ +
∑

β

E1,βγ ∼ R1 . (3.33c)

They show that all ordinary divisors are linear combinations of exceptional and
inherited ones. Furthermore, the exceptional and inherited divisors are linearly
independent. Their number is 48 + 3 = 51 = h1,1 so we have found a basis of
the H2,2 homology or the H1,1 cohomology, respectively. Note that we profit a
lot from the various permutation symmetries of the Z2 × Z2 orbifold. For other
orbifolds the construction of these divisors turns out to be more complicated
since every twisted sector has to be analyzed separately. In general even the
different fixed loci in the same torus behave different, see e.g. [28].
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D1
D2

D3

E1E2

E3

R1

R2

R3

Figure 3.6: The topology of the resolved Z2 × Z2 orbifold is described by 64
auxiliary polyhedra, one for each combination of fixed point labels α,β,γ, which
here are dropped for convenience.

Auxiliary Polyhedra

To be able to compute integrals of forms over various cycles we are interested in
the intersection numbers of these 51 divisors. In blow-down we had 64 points
(zα

1 , z
β
2 , z

γ
3 ) in which the fixed lines F1,βγ , F2,αγ and F3,αβ intersect. The neigh-

borhood of these points topologically look like C3/Z2 × Z2, so for each of them
we can draw a toric diagram to determine the basic intersection numbers. But
there are also the inherited divisors which extent the toric diagrams to 64 auxil-
iary polyhedra, one for each combination of fixed point labels α,β,γ. To display
them more symmetrically, we choose other vectors for the ordinary divisors6

D1,α, D2,β, D3,γ,

u1 = (2, 0, 0) , u2 = (0, 2, 0) , u3 = (0, 0, 2) . (3.34)

Again the vectors representing the exceptional divisors E1,βγ , E2,αγ , E3,αβ are
given by (3.21),

w1 = (0, 1, 1) , w2 = (1, 0, 1) , w3 = (1, 1, 0) . (3.35)

6This choice violates the requirement that the inhomogeneous coordinates Zk =
∏

i z
(ui)k

i

are an integer basis of invariant monomials.
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The vectors ti for the inherited divisors Ri, which are the same in all polyhedra,
are uniquely chosen such that they reproduce the linear equivalences (3.33),

t1 = (−1, 0, 0) , t2 = (0,−1, 0) , t3 = (0, 0,−1) . (3.36)

Now we draw the auxiliary polyhedra (see fig. 3.6) which have to be triangulated.
Its front faces are distorted projected toric diagrams for which we have the four
possibilities shown in fig. 3.5. These 64 polyhedra can now be used to determine
all intersection numbers between three divisors denoted by Si with toric vectors
si in the following way:

• If there is no auxiliary polyhedron in which all three divisors appear their
intersection number is zero. This is clear since at least two of these divisors
must differ in at least one label α, β or γ which means they live at different
fixed loci and hence do not intersect.

• The inherited divisors do not intersect with themselves as can easily be
seen when writing them as forms, Ri ∼ dzi ∧ dz̄i.

• If the three divisors are different and do not span a cone in the triangu-
lation then they also do not intersect. More generally one can say that
the intersection SiSjSk vanishes if at least one of the curves SiSj , SiSk or
SjSk does not exist, i.e. if the corresponding vectors are not connected by
a line7.

• The only non-vanishing intersection numbers of three different divisors are
the ones whose vectors span a cone in at least one auxiliary polyhedron.
Its value is given by

SiSjSk =

∣

∣

∣

∣

N

det(sisjsk)

∣

∣

∣

∣

, (3.37)

where N is a normalization constant which can be determined by one
known intersection number. For the polyhedra considered here we find
N = 2.

• The remaining intersection numbers, i.e. those containing self-intersections,
can be computed using the linear equivalence relations (3.33). The most
general procedure is to multiply the 12 relations with all 51·52

2
products

of two divisors and insert all known intersection numbers to obtain 15912
equations for the remaining ones. But many of these equations contain
only products of divisors which do not intersect, so we are left with 3672
equations. If we now count equal equations only once we obtain a system
of 1172 linear equations with 708 unknowns which can be solved. The fact
that there are more equations than unknowns can be seen as a cross-check.

7Such a line may not go through another divisor.
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triang(α,β,γ) “symm” “E1” “E2” “E3”

E1,βγE2,αγE3,αβ 1 0 0 0
E1,βγE

2
2,αγ -1 -2 0 0

E1,βγE
2
3,αβ -1 -2 0 0

E2
1,βγE2,αγ -1 0 -2 0

E2,αγE
2
3,αβ -1 0 -2 0

E2
1,βγE3,αβ -1 0 0 -2

E2
2,αγE3,αβ -1 0 0 -2

Table 3.2: Intersection numbers of exceptional divisors for T 6/Z2 × Z2.

As result we present all non vanishing intersection numbers between exceptional
and inherited divisors. The ones with ordinary divisors can be obtained using
(3.33). First we observe that the intersection numbers containing an inherited
divisor are triangulation-independent. This was to be expected since the trian-
gulation only affects the ordinary and exceptional divisors. We find

R1R2R3 = 2 , (3.38)

R1E
2
1,βγ = R2E

2
2,αγ = R3E

2
3,αβ = −2 . (3.39)

The intersection numbers containing at least two different exceptional divisors
only depend on the triangulation of the auxiliary polyhedron in which they meet.
Note that having two different divisors completely fixes the labels α, β, γ and
hence there is only one polyhedron in which they meet, see tab. 3.2. Here we
exactly recover the results of the non-compact case (see tab. 3.1) when we drop
the fixed point labels. Finally there are the triple self-intersection numbers of
exceptional divisors. Since one such divisor only fixes two fixed point labels,
their value will depend on four auxiliary polyhedra where the remaining fixed
point label runs from 1 to 4. When we define

• N symm
βγ := number of polyhedra (α, β, γ) with symmetric triangulation,

• NEi

βγ := number of polyhedra (α, β, γ) with “Ei” triangulation,

we find for the triple intersection:

E3
1,βγ = N symm

βγ + 2NE2

βγ + 2NE3

βγ , (3.40a)

E3
2,αγ = N symm

αγ + 2NE1

αγ + 2NE3

αγ , (3.40b)

E3
3,αβ = N symm

αβ + 2NE1

αβ + 2NE2

αβ . (3.40c)

The interpretation of this is that the intersection numbers are the sums of the
local ones from the four polyhedra.

We saw that when we want to resolve the Z2×Z2 orbifold completely we have
to specify 64 triangulations which determine the intersections of the divisors and
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hence the topology. For each of them there are four choices so we totally gain
464 ≈ 3 · 1038 possibilities to triangulate the whole resolution. But not all of
these possibilities result in inequivalent spaces. By permuting the three T 2’s
and the four fixed point labels inside each torus we can map one triangulation
to another which shows that the described spaces are homeomorphic. Since few
of the resolved spaces are symmetric under such permutations, this gives rise
to a lower bound on the number of inequivalent CY manifolds which have theZ2 × Z2 orbifold as singular limes,

Ndiffeomorphism classes &
464

3! · 4!3
≈ 4 · 1033 . (3.41)

Chern class

The total Chern class is of the form

c =
∏

S

(1 + S)nS , (3.42)

where the sum runs over all divisors. From the local resolutions we know that
the coefficients of the ordinary and exceptional divisors are nD = nE = 1. To
determine nR we do the following. The total Chern class can be expressed by
the curvature 2-form R

c = det

(

1 − R
2πi

)

. (3.43)

We know that on the orbifold the curvature vanishes on the bulk and develops a
singularity on the fixed lines. In blow-up the fixed lines are replaced by the ex-
ceptional divisors and hence the Chern class must be a function only of them and
not of the inherited divisors. We decompose the Chern class as c = CEC1C2C3

with CE =
∏

E(1 +E) and Ci = (1 +Ri)
nR
∏

δ(1 +Di,δ) such that the whole Ri

dependence is contained in Ci. Now we replace the D’s according to (3.33) and
find e.g. for i = 1

C1 = (1 +R1)
nR

∏

α

(

1 +
1

2
R1 −

1

2

∑

β

E3,αβ − 1

2

∑

γ

E2,αγ

)

= 1 + (nR + 2)R1 −
1

2

∑

αβ

E3,αβ − 1

2

∑

αγ

E2,αγ .

(3.44)

Here we have used the fact that the curves R2
1, R1E2,αγ , R1E3,αβ, E2,αγE2,α′γ ,

E3,αβE3,α′β and E2,αγE3,α′β do not exist. The requirement of flatness on the bulk
in blow-down implies nR = −2. Thus we can write down the total Chern class

c =
∏

i,δ

(1 +Di,δ)
∏

i,δ,ǫ

(1 + Ei,δǫ)
∏

i

(1 − 2Ri) . (3.45)

We observe:
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• The first Chern class vanishes, c1 = 0 due to the linear equivalence relations
(3.33). Thus the resolved spaces we create are all CY.

• The integrated third Chern class is always equal to the expected Euler
number (2.37) independent of the vast choice of triangulations,

∫

c3 = 96.

• The Euler number of the divisors can be calculated using the adjunction
formula

∫

S

c2 = Sc2 = χ(S) − S3 . (3.46)

For the inherited divisors we find χ(Ri) = Ric2 = 24 = χ(K3).

• For the exceptional divisors, e.g. E1,βγ we find

∫

E1,βγ

c2 = E1,βγc2 = −4 + 2N symm
βγ + 4NE1

βγ , (3.47)

so together with (3.40) and (3.46) we obtain

χ (E1,βγ) = 4 +N symm
βγ + 2NE1

βγ , (3.48)

i.e. the topology of the exceptional divisors is triangulation-dependent.

3.4 Kähler Moduli and Triangulation

A CY manifold is by definition a Kähler manifold. A manifold is Kähler if the
Kähler form J is closed. On the resolution of the Z2×Z2 orbifold we have found
a basis of closed forms, namely the divisors Ri and Er where r is a multi-index
that runs over all exceptional divisor labels. Thus we can expand the Kähler
form in these divisors

J =
∑

i

aiRi −
∑

r

brEr . (3.49)

In the d = 4 low energy effective theory the coefficients ai and br are scalar fields
which are called Kähler moduli. Note that Z2,free will require moduli br from
the exceptional divisors, that are mapped onto each other, to be equal and will
effectively reduce their number from 48 to 24.

The Kähler form can be used to compute the volumes of complex curves
C ((1, 1)-cycles), divisors S ((2, 2)-cycles) and of the whole CY manifold X (a
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Cycle C Vol(C)

E2,αγE3,αβ

triang(α,β,γ)
−b1,βγ + b2,αγ + b3,αβ “symm”

0 “E1”
2b3,αβ “E2”
2b2,αγ “E3”

D1,αE1,βγ

triang(α,β,γ)
b1,βγ − b2,αγ − b3,αβ “E1”

0 else

D1,αE2,αγ a2 +
∑

β

{

b2,αγ − b1,βγ if triang(α, β, γ) = “E1”

−b3,αβ else

}

R1E1,βγ 2b1,βγ

R1D2,β a3 −
∑

γ

b1,βγ

R1R2 2a3

Table 3.3: Volumes of (1, 1)-cycles in terms of the Kähler moduli.

(3, 3)-cycle).

Vol(C) =

∫

C

J = JC , (3.50a)

Vol(S) =
1

2!

∫

S

J ∧ J =
1

2
JJ S , (3.50b)

Vol(X) =
1

3!

∫

X

J ∧ J ∧ J =
1

6
JJJ . (3.50c)

Using these formulæ and the intersection numbers, we can express the volumes
of the cycles on our manifold by the Kähler moduli values. The permutation
symmetry will make the following listings complete.
In table 3.3 we list the volume of the (1, 1)-cycles which we express as products

of two divisors. The requirement of the volumes to be positive puts restrictions
on the Kähler moduli. We will impose this requirement on the various cycles
and discuss its implications.

• We first note that volumes of cycles which are products with inherited di-
visors are triangulation-independent. Cycles like E2,αγE3,αβ and D1,αE1,βγ

correspond to interior lines in the toric diagram and hence are compact
in the local resolutions. Therefore their volume formula only depends on
the particular triangulation. By contrast the cycles of type D1,αE2,αγ are
only compact in the global description and their volume depends on the
triangulations of the 4 auxiliary polyhedra in which they appear.
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• From Vol(RiEi,δǫ) ≥ 0 and Vol(RiRj) ≥ 0 it follows that the values of all
51 moduli ai and bi,δǫ must be positive. Here we also see the reason for the
minus sign in front of the bi,δǫ in the Kähler form (3.49). Further due to
h1,1 = 51 theses cycles are a basis of the homology class H1,1. But because
of the prefactor 2 in their volumes which does not appear in the other ones
they can not be an integral basis.

• The cycle D1,αE1,βγ exists in the “E1” triangulation but not in the sym-
metric one whereas the opposite is true for E2,αγE3,αβ . Positivity of the
volumes implies that b1,βγ > b2,αγ + b3,αβ is equivalent to having the “E1”
triangulation8. The point in moduli space where b1,βγ = b2,αγ + b3,αβ is
a transition between these two triangulations. At this point both cycles
are shrunk to zero and we have found a smooth transition between these
triangulations through a singular point9.

• At the transition from the symmetric to e.g. the “E2” triangulation the vol-
ume of E2,αγE3,αβ changes smoothly since at this point b2,αγ = b1,βγ + b3,αβ .

• The volumes of RiDj,δ are of the form “ai − bj” hence the values of the b
moduli must be small compared to the a moduli. This fits nicely to them
being blow-up modes which locally resolve the singularity but not having
big influence on the global geometry.

As a strong result one can say that we have divided the moduli space of our CY
manifold into disjoint regions which have the form of cones and which correspond
to the different triangulations. The choice of triangulation is no longer arbitrary
but follows immediately from the ratios of the vevs of the moduli fields. The
boundaries of these regions correspond to singular points in which the topology
of the manifold changes. For completeness we also give the volumes of the
exceptional and inherited divisors,

Vol(R1) = 2a2a3 −
∑

β,γ

b21,βγ , (3.51)

Vol(E1,βγ) = a1b1,βγ + f
(2)
1,βγ(br) , (3.52)

and of the whole manifold,

Vol(X) = 2a1a2a3 −
∑

β,γ

a1b
2
1,βγ −

∑

α,γ

a2b
2
2,αγ −

∑

α,β

a3b
2
3,αβ + f (3)(br) . (3.53)

8In the same way b2,αγ > b1,βγ + b3,αβ is equivalent to triang(α,β,γ) = “E2” and
b3,αβ > b1,βγ + b2,αγ to triang(α,β,γ) = “E3” .

9This singularity is less singular than the orbifold point in which all internal cycles have
zero volume.
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Here f
(2)
r (br) and f (3)(br) are homogeneous second or third order polynomials in

the twisted moduli which are highly triangulation-dependent. From (3.52) we
read off that br → 0 corresponds to the blow down limes. Increasing br slowly,
i.e. blowing up, gives volume to the exceptional divisors while it eats away the
volume of the inherited divisors and of the whole manifold. Again we see that
br cannot grow arbitrarily but must stay small compared to ai.
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Chapter 4

Model Building on Resolved
Orbifolds

Now that we have a topological description of the resolved Z2 ×Z2 orbifold, we
can use it as a compactification space for the heterotic string. Unfortunately, we
are not able to give a CFT description of this compactification, i.e. to explicitly
construct the strings on the manifold and to quantize them. Therefore we take
another approach. First we take the low energy limit of the heterotic string
which is a 10 dimensional N = 1 SUGRA with an E8 × E8 SYM theory called
heterotic SUGRA. For this theory we know all massless modes (2.24), (2.26) and
we can write down an action. Then we compactify on our CY space and explore
the four-dimensional massless spectrum.

4.1 Gauge Flux Embedding

The task at this point is to match the orbifold models to models on the resolved
space. The input data of an orbifold model are the shift vectors and the Wilson
lines. Let us concentrate on the Z2 × Z2 case where there are 2 independent
shift vectors V1 and V2 and 6 Wilson lines Wi. They correspond to local shifts
around each fixed line. If a fixed point is fixed by the space group element
g = (θm1

1 θm2

2 , niei) then the local shift vector is Vg = m1V1 +m2V2 + niWi. This
local shift corresponds to an internal gauge field A that wraps a 1-cycle around
the singularity, i.e. a cycle that is closed by g. Such a cycle can be shrunk to zero
length by contracting it to the fixed point which means that it is the boundary
of a 2-surface that contains the fixed point. By applying Stokes’ theorem this
means that there is an Abelian 2-form flux F = dA in form of a delta-peak
localized in the singularity. Now in blow-up, the singularity is smoothed out and
so should be the flux.

A flux on a CY manifold must satisfy the Hermitian Yang–Mills (HYM)

47
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equations,

Fab = Fāb̄ = 0 , (4.1)

Fab̄Gab̄ = 0 , (4.2)

in order to preserve N = 1 SUSY. G is the CY metric. To be more concrete,
(4.1) is equivalent to F -flatness and (4.2) to D-flatness.

Equation (4.1) further implies that F is a (1, 1)-form. Thus, to obtain a
stable flux that is able to match the orbifold description we need to expand
F in closed but not exact (1, 1)-forms that are localized in the fixed lines in
blow-down. Such forms are exactly the exceptional divisors E so we write

F = ErV
I
r H

I . (4.3)

TheHI are the Cartan generators of E8×E8 which ensures the flux to be Abelian.
The V I

r are 48 vectors with 16 components called bundle vectors. Matching them
with the orbifold can be made with Stokes’ theorem by focusing on the local
blow-up picture. To get e.g. the shift vector V1,local shift we integrate over the
curve C : c(φ) = (z1, 0, r e

iφ). For r → ∞, C is the boundary of the cycle R1D2

and we find,

V I
1,local shiftH

I =

∫

C

A =

∫

R1D2

Flocal = V I
1,bundleH

I , (4.4)

which explains the usage of the same symbol for the shift and bundle vector.
The other bundle vectors are identified with the local shifts similarly and we
find in particular that they all must be quantized just as the shift vectors and
Wilson lines. It turns out that demanding strictly the identification (4.4) it
is not possible to solve the Bianchi Identities (see sec. 4.1.1). Therefore we
require (4.4) to be valid only up to addition of lattice vectors. Otherwise the
underlying orbifold model would necessarily have to be a grandchild model. Due
to the ambiguity of adding lattice vectors it seems that we have infinitely many
possibilities for gauge fluxes for a given set of shift vectors and Wilson lines.
But soon we will see that this choice is indeed limited and finite. Note that
this choice of bundle vectors is exactly the same for brother and grandchildren
sec. 2.3 so it is not yet clear whether we blow up one of them.

4.1.1 Bianchi Identities

In the low energy effective theory we have to deal with various anomalies. Fortu-
nately, in heterotic SUGRA all anomalies can be cancelled by the Green–Schwarz
mechanism [11]. This mechanism requires the 2-form field B2 to be charged un-
der gauge and coordinate transformations. This implies that its 3-form field
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strength must be modified to be invariant,

H3 = dB2 + ωL
3,CS − ωYM

3,CS . (4.5)

Here we introduce the Lorentz Chern–Simons 3-form

ωL
3,CS = Tr

(

ω ∧R− 1

3
ω ∧ ω ∧ ω

)

, (4.6)

with ω being the spin connection, and the Yang–Mills Chern–Simons 3-form

ωYM
3,CS = Tr

(

A∧ F − 1

3
A ∧A ∧A

)

. (4.7)

In both cases “Tr” denotes an appropriately normalized trace. Since H3 appears
in the action it must be globally defined. The same is true for its exterior
derivative

dH3 = TrR∧R− TrF ∧ F . (4.8)

which is an exact form. Equation (4.8) is called Bianchi Identity (BI). One way
to solve it, called standard embedding, is to embed the spin connection, which
is of SU(3) type, into the E8 ×E8 gauge group. But we are interested in Abelian
fluxes and hence we make the ansatz (4.3). Due to Stokes’ theorem its integral
over all closed 4-cycles must vanish,

0 =

∫

S

dH3 =

∫

S

(TrR∧R− TrF ∧ F) . (4.9)

On the resolved space a basis of 4-cycles is given by the exceptional and inherited
divisors {Er, Ri} and therefore we obtain 51 independent equations from (4.9)
which we will refer to when speaking about BI’s in the following. Inserting
TrR2 = −2c2(X) and (4.3) and using the intersection numbers we find that the
BI’s are Diophantine1 equations for the bundle vectors V I

r .

Bianchi Identities on Inherited Divisors

Let us first have a look at the BI’s integrated over the inherited divisors Ri. Since
intersection numbers containing Ri are triangulation-independent these BI’s are
as well. They read

∑

β,γ

V 2
1,βγ = 24 , (4.10a)

∑

α,γ

V 2
2,αγ = 24 , (4.10b)

∑

α,β

V 2
3,αβ = 24 , (4.10c)

1A Diophantine equation is a polynomial equation for which one is interested in integer
solutions.
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on R1, R2 and R3 respectively. They imply that the choice of bundle vectors
is finite. In sec. 4.2 we will see that the bundle vectors are the weights of the
blow-up modes. Obviously the choice for bundle vectors Vr and shifted weights
Vsh in each twisted sector are the same. In sec. 2.4 we saw that for massless
modes we either have V 2

sh = 1/2 or V 2
sh = 3/2. Hence the only way to solve (4.10)

with only massless blow-up modes is to choose

V 2
r = 3/2 (4.11)

for all bundle vectors. Otherwise, choosing V 2
r = 1/2 for one bundle vector

would imply that there must be some other bundle vector with V 2
r > 3/2 which

would correspond to a massive blow-up mode.

Bianchi Identities on Exceptional Divisors

The BI’s integrated over the exceptional divisors are, in contrast to (4.10), highly
triangulation-dependent. Thus, when trying to solve them, it is necessary to
select one out of the approximately 4 · 1033 inequivalent triangulations. Here we
only present the BI’s for the two most symmetric cases. The most symmetric
one is to choose the symmetric triangulation for all 64 polyhedra. With the
results from sec. 3.4 this is the case when the values of all twisted moduli are
approximately of the same size. In this triangulation, all allowed intersection
numbers between exceptional divisors, i.e. all which can be drawn in one auxiliary
polyhedron, do not vanish and hence the BI’s are highly coupled. On the divisors
E1,βγ , E2,αγ and E3,αβ they read

4V 2
1,βγ+

∑

α

(

V2,αγ ·V3,αβ − 2V1,βγ ·(V2,αγ +V3,αβ) − V 2
2,αγ − V 2

3,αβ

)

= −8 , (4.12a)

4V 2
2,αγ +

∑

β

(

V1,βγ ·V3,αβ − 2V2,αγ ·(V1,βγ +V3,αβ) − V 2
1,βγ − V 2

3,αβ

)

= −8 , (4.12b)

4V 2
3,αβ+

∑

γ

(

V1,βγ ·V2,αγ − 2V3,αβ ·(V1,βγ+V2,αγ) − V 2
1,βγ − V 2

2,αγ

)

= −8 . (4.12c)

The next-highest symmetric possibility would be to have e.g. the “E1” triangu-
lation in all polyhedra. This corresponds to the case in which the b1 moduli are
significantly larger than the others, i.e. the singularities from the θ1 sector are
“more resolved”. Now the BI’s look much simpler

∑

α

(

V 2
2,αγ + V 2

3,αβ

)

= 12 , (4.13a)

2V 2
2,αγ −

∑

β

V2,αγ · V1,βγ = 2 , (4.13b)

2V 2
3,αβ −

∑

γ

V3,αβ · V1,βγ = 2 . (4.13c)
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First one finds that the assumption (4.11) already solves (4.13a). But also the
others are less coupled, such that this triangulation seems more promising for
finding solutions. The methods and results of searching for solutions will be
presented in sec. 4.3.

4.2 Low Energy Effective Action

The starting point for describing a physical theory is to write down an action.
From it all properties of the theory can be deduced. In the process of CY
compactification, which we follow here, we start with d = 10, N = 1 heterotic
SUGRA containing an E8×E8 SYM theory. Its massless field content is shown in
(2.24) and (2.26). For us, the bosonic part of the action is of particular interest.
It reads

Sb =
1

2κ2

∫

e−2φ

(

R ∧ ∗1 + 4dφ ∧ ∗dφ− 1

2
H3 ∧ ∗H3

)

− 1

2g2

∫

TrF ∧ ∗F + SGS ,

(4.14)

with SGS being a topological term postulated by the Green–Schwarz mechanism
and ∗1 = d10x

√−g being the volume form. For the compactification we factorize
the fields in a four dimensional spacetime part and a six dimensional CY part
which is an eigenfunction of the derivative operator appearing in the respective
e.o.m. The zero modes, i.e. those with zero eigenvalue will be the massless modes
in the d = 4 theory while the others build a generalized Kaluza–Klein tower. For
bosonic fields this operator is the Laplace operator and hence the zero modes
are the harmonic functions. Since in each cohomology class there is exactly one
harmonic form the number of zero modes is given by the Hodge numbers.

Identification of Blow-up Modes

Let us first expand the two-form B2. Since a CY space has h1,0 = 0, its indices
must be either both spacetime indices or both internal indices. For the first
case there is only one zero mode which is the constant function. The corre-
sponding d = 4 field is called model-independent axion b2 since it is dual to an
pseudoscalar. For the second case there are 51 independent harmonic 2-forms
on the resolved orbifold which are the divisors. The fields wrapping them are
the model-dependent axions αi and βr. We find

B2 = b2 + αiRi + βrEr . (4.15)

A similar expansion has been done for the Kähler form in (3.49). On the CY
the Kähler form and the 2-form can be joined to the complexified Kähler form
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whose expansion coefficients are complex scalars, i.e. the bosonic components of
the moduli multiplets

J − iB2 = (ai − iαi)Ri − (br + iβr)Er . (4.16)

From the neutralness of H3 we can read off the behavior of the model-dependent
axions under Abelian gauge transformations ΛI ,

βr → βr − V I
r ΛI . (4.17)

To obtain a linearly transforming field we make a field redefinition by exponen-
tiating

Ψr = e2π(br−iβr) , Ψr → e2πiV I
r ΛI

Ψr . (4.18)

In blow-down these fields are localized at the fixed lines Fr and hence are twisted
orbifold states with charges V I

r . Since we only have fixed lines, these states are
six-dimensional states which may be projected out when going to four dimen-
sions. These states contain further the Kähler moduli br which are responsible
for the blow-up. Hence we have identified the blow-up modes on the orbifold.
But there is still one inconsistency in this picture. In the geometrical picture
in sec. 3.4 we saw that br → 0 corresponds to the blow-down limes. In this
limes the blow-up modes Ψr should have a vanishing vev which is equivalent to
br → −∞. The solution is that if the length and curvature scales of the CY
approach the string scale, the string corrections become relevant and modify the
classical geometrical picture which we used before. For a detailed discussion
see [14].

Anomalous U(1)’s

The four-dimensional gauge group of heterotic orbifold models with Abelian
gauge embedding may contain non-Abelian factors, together with U(1) factors
to keep the rank. In turns out that the U(1)’s can be rotated such that only one
of them is anomalous and hence is called U(1)anom. Here the model-independent
axion can be used to cancel this anomaly. In blow-up there are many anomalous
U(1) factors [25] which will be cancelled by the model-dependent axions. To
see this we look closer at the 3-form flux (4.5) term in the bosonic action (4.14).
Inserting the expansions of the 2-form (4.15), the gauge flux (4.3) and the Abelian
part of the 1-form potential, A = AIHI , we find among others the term

H3 = Er(dβr + V I
r A

I) + . . . , (4.19)

which shows that (4.17) is the right transformation behavior to make H3 gauge
invariant. We further see that certain linear combinations of axions are eaten by
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the gauge bosons and act now as their longitudinal dof while the linear combi-
nations orthogonal to them remain untouched. We can perform a gauge trans-
formation to gauge the eaten axions away and obtain in this way a mass term
for the four dimensional gauge bosons by inserting (4.19) into (4.14)

∫

X

H3 ∧ ∗H3 = AI
µA

J,µM2IJ
+ . . . , (4.20)

with the mass matrix

M2IJ
= V I

r V
J
s ·
∫

X

Er ∧ ∗6Es . (4.21)

Here ∗6 denotes the Hodge star on the internal space X. The scalar product on
divisor space, given by

〈S1, S2〉 =

∫

X

S1 ∧ ∗6S2 , (4.22)

is positive definite in complete blow-up which implies that the rank of the mass
matrix is equal to the rank of V I

r as a matrix. From this it follows that the U(1)’s
which are orthogonal to all bundle vectors remain massless while the others get
a mass in the process of anomaly cancellation. This mass matrix depends on
the moduli since the metric appears in the Hodge star and we strongly assume
this dependence to be such that the mass matrix vanishes in an appropriate
blow-down limit2 since at the orbifold point there is at best one anomalous
U(1).

Chiral Spectrum

Now we know that the Abelian part of the d = 4 gauge group G4 is given by the
U(1)’s which are orthogonal to the bundle vectors. But in d = 10 we started with
a E8 × E8 SYM theory, i.e. we had 480 gauge multiplets with non-trivial root
vectors, see (A.1). It turns out that roots which are orthogonal to the bundle
vectors remain massless after the compactification and can enhance the gauge
group to a non-Abelian one. The other roots do not survive the compactification
as gauge bosons but they can still appear in the massless spectrum in form of
chiral multiplets. Group-theoretically this corresponds to a decomposition of the
adjoint of E8 × E8 into the adjoint of G4 plus a couple of other representations.

2Using the formula ∗S = 3/4J 2 ·
∫

X
J 2S/

∫

X
J 3 − SJ /2 from [12] which is valid for

harmonic (1, 1)-forms S in classical geometry one can show that in the limes br → 0 the mass
matrix does not vanish and even keeps its rank. For a proper blow-down limit we again have
to enter a “stringy” geometry regime.
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The multiplicity in which these chiral multiplets appear can be seen by integrat-
ing the gaugino anomaly polynomial in d = 10 over the manifold which results
in the d = 4 anomaly polynomial in which the multiplicity operator

N =

∫

X

(

1

6
F3 − 1

24
trR2 · F

)

(4.23)

appears. The powers are understood in terms of wedge products. For details see
e.g. [23]. The Cartan generators HI which appear in N act on the E8 ×E8 roots
|P 〉 as

HI |P 〉 = P I |P 〉 , (4.24)

such that |P 〉 are all eigenvectors of N with the eigenvalue being the multiplicity.
The multiplicity operator is an odd polynomial in the 2-form flux which implies
that the sign of the multiplicity flips when the weight vector does. We see that the
chiral dofs appear in CPT-conjugate pairs and one only has to count the positive
multiplicities. Note that computing the integral in (4.23) is performed with the
help of intersection numbers and is, in particular, triangulation-dependent. The
multiplicity operator can also be obtained by the Dirac index theorem which in
this context counts the number of spinorial zero modes. One important result of
the spectra obtained from N is that they are free of pure non-Abelian anomalies.

D-Flatness

We have not yet discussed the second HYM equation (4.2). It can be multiplied
with the six dimensional volume element and integrated over the whole manifold,

∫

X

Fab̄Gab̄ ∗ 1 ∼
∫

X

J 2F = 0 . (4.25)

Inserting (4.3) and using (3.50b) shows that this is a set of equations for the
exceptional divisor volumes,

∫

X

J 2F =
∑

r

Vol(Er)V
I
r = 0 , I = 1 . . . 16 . (4.26)

The number of independent equations is the rank of V I
r . We find that in most

cases this equation would force many or even all exceptional divisor volumes to
be zero which would mean we go to (complete) blow-down. But this statement
gets modified by two corrections. First, when the divisor volumes approach
zero the classical geometrical description is replaced by a “stringy” geometrical
one with a different measure, i.e. the volume formula (3.50b) is no longer valid.
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Triangulation

Bianchi Identities

Bundle VectorsDUY-Equations

Blow-up mode vevs

Figure 4.1: Ring of strict implications (bold arrows) and restrictions (thin ar-
rows).

Second, equation (4.25) is valid only at tree level. Taking into account one-loop
corrections changes it to the Donaldson–Uhlenbeck–Yau equation (DUY),

∫

X

J 2F =
e2φ

8π

∫

X

[(

TrF ′2 − 1

2
TrR2

)

F ′ + (F ′ → F ′′)

]

. (4.27)

The primed and double-primed field strengths come from the first and second E8

factor, respectively. Once we fix the triangulation and the gauge flux, these are
inhomogeneous equations for the ratios of the moduli to the string coupling e2φ.

Furthermore, in sec. 3.4 we have seen that the ratios of the moduli determine
the triangulation uniquely. This closes a ring of equations and properties which
affect one another circularly, see fig. 4.1.

In a d = 4 SUSY theory there are two requirements for unbroken N = 1
SUSY which are F -flatness and D-flatness. The D-term of a SYM theory with
further charged states is

Da = −g
∑

i

φ∗
iT

aφi , (4.28)

where the sum runs over all chiral multiplets with φi being their scalar component
and T a are the generators. For an Abelian part of the gauge group we can replace
the generators by the charges Qa

i of the multiplet. If such an Abelian factor
is anomalous, the GS mechanism induces a FI D-term ξa and the D flatness
condition reads

g
∑

i

Qa
i |φi|2 = ξa . (4.29)
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This equation is very similar to the DUY equations (4.27) when writing it in
terms of the divisor volumes, cf. (4.26), since the bundle vectors are the weight
vectors of the blow-up modes (4.18) attaining a vev and their U(1) charges
are just linear combinations of them. Further the DUY one-loop correction
corresponds to the FI term and affects only the anomalous U(1)’s since the
space spanned by the bundle vectors is the space of anomalous U(1)’s. One only
has to replace the blow-up mode vev squares by the divisor volumes which are
obviously not equal. But this discrepancy is not yet completely understood.

4.3 Blow-Up of the 6-GenerationZ2 × Z2 Model

Finally, we present a model on the resolution of the Z2×Z2 orbifold which could
result from blowing up the singularities in the orbifold model. The blow-up
modes attain vevs which induce mass terms for some of the chiral multiplets and
project them out of the low energy spectrum. Yet it is not clear whether we
really blow up this model or one of its brothers or even grandchildren.

The challenge is to find a solution to the 51 integrated BI’s (4.9) for which
one first has to choose a triangulation. Such a solution in form of 48 bundle
vectors must be of the form,

V1,βγ ≡ V1 +
∑

i=3,4,5,6

niWi , (4.30a)

V2,αγ ≡ V2 +
∑

i=1,2,5,6

niWi , (4.30b)

V3,αβ ≡ V1 + V2 +
∑

i=1,2,3,4

niWi . (4.30c)

where the matching of indices α, β, γ with the ni can be read off from the
following tables,

α n1 n2

1 0 0
2 0 1
3 1 0
4 1 1

,

β n3 n4

1 0 0
2 0 1
3 1 0
4 1 1

,

γ n5 n6

1 0 0
2 0 1
3 1 0
4 1 1

.

In sec. 4.1.1 it was shown that the set of potential solutions is finite but from
first principles it is not clear how many solutions exist.Z2,free Symmetric Model Building

We want to blow up a model with six generations of SU(5) GUT and then
mod out the Z2,free to break it down to a SM with three generations. Alterna-
tively we could first mod out Z2,free to obtain a three-generation MSSM on a
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Orbifold
GUT, 6 generations

Orbifold
SM, 3 generations

Calabi-Yau
GUT, 6 generations

Calabi-Yau
SM, 3 generations

Blow-up Blow-up

mod out Z2,free

mod out Z2,free

Figure 4.2: Two ways to obtain the MSSM on a CY from a 6 generation GUT
on the Z2 × Z2 orbifold.

non-factorizable orbifold T 6/(Z2×Z2 ×Z2,free), before blowing it up, see fig. 4.2.
We assume these two procedures to commute. The blow-up of the GUT model
must satisfy some requirements in order to preserve the Z2,free symmetry. Since
it maps pairs of fixed points onto each other, their blow-ups must be done in a
symmetric way. Thus we must choose the same bundle vectors at these resolved
points,

V1,βγ = V1,β′γ′ , V2,αγ = V2,α′γ′ , V2,αβ = V2,α′β′ . (4.31)

For the index matching, see (2.62). In the same way the blow-up modes at the
divisors which replace the fixed points, must be equal to obtain a symmetric
geometry. This reduces the number of Kähler moduli from 51 to 27 as required
by the Hodge numbers (2.63). On the orbifold, Z2,free maps the points in which
fixed tori meet onto each other,

(

zα
1 , z

β
2 , z

γ
3

)

↔
(

zα′

1 , z
β′

2 , z
γ′

3

)

. (4.32)

On the resolution this corresponds to a mapping of the loci in which exceptional
divisors intersect, i.e. which are described by one of the 64 auxiliary polyhedra.
Here Z2,free dictates that the triangulations of the polyhedra must be equal, but
this is already implied by the equality of the blow-up modes. The number of
inequivalent triangulations fulfilling this can be estimated in the following way:
We must choose 32 independent triangulation so we start with 432 possibilities.
The permutations which we divide out in (3.41) are slightly modified since all
triangulations are symmetric unter the simultaneous fixed permutation of the
fixed loci which is given by Z2,free. Thus we obtain,

N
Z2,free symmetric
diffeomorphism classes &

432

3! · 4!3/2
≈ 4 · 1014 . (4.33)

A result of sec. 3.3 was that intersection numbers of only exceptional divisors
are either determined by just one triangulation or can be split into contributions
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from four polyhedra in the case of triple self-intersections. This implies that
integrals of products of exceptional divisors only can be rewritten into sums
over the 64 polyhedra and we see that modding out Z2,free divides such integrals
by two if they are Z2,free-symmetric. One such integral is the third Chern class
integrated over the whole manifold, which implies that the Euler number is
halved just as expected by (2.37) and (2.64). Another one is the multiplicity
operator (4.23), so the amount of chiral matter will be halved apart from effects
of the new Wilson line. As one consequence, we expect multiplicities of the
resolved GUT model to be even.

Search Procedure

The explicit model search and the computation of the properties of the models
are done by extensive use of computers. To this end a c++ code has been devel-
oped. It first creates a choice of all bundle vector candidates of the form (4.30)
with length postulated by (4.11). This way the BI’s on the inherited divisors are
fulfilled. This further corresponds to the blow-up mode being a massless twisted
orbifold state, at least in d = 6. Since we do not want to break the GUT SU(5)
we remove all vectors from this choice which are not orthogonal to the SU(5)
simple roots.

To keep the Z2,free, we restrict the search to bundle vectors satisfying (4.31).
Another simplification can be done due to the vanishing of the first Wilson line
(2.65c). It motivates the restriction to choose the same bundle vector at ex-
ceptional divisors which differ by W1, i.e. whose associated fixed points differ by
e1/2 in blow-down. The number of independent bundle vectors and of remaining
BI’s is reduced to 16.

The next step is to fix the triangulation. A search over all triangulations on
an ordinary computer would probably last longer that a human lifetime and is,
in particular, not possible within this thesis.

We performed the search mainly for the overall symmetric and the overall
E1” triangulation. In the symmetric case, 16 independent and highly coupled
equations (4.12) must be solved and we find that there exist no solutions. In
the E1” triangulation the BI’s on the E1,βγ (4.13a) are already fulfilled, thus
we only have to solve 8 independent and much simpler equations, (4.13b) and
(4.13c). By a systematic search we can find roughly one hundred solutions per
second. These models differ by the d = 4 hidden sector gauge group and by
the multiplicities of the chiral matter which could be explained by brother or
grandchildren models.

During the search among other 6 generation GUT models we haven’t found
any model whose bundle vectors all correspond to d = 4 massless states. One
always has to include the weights of states which are projected out by the secondZ2. In this model it is even necessary from the beginning since in some fixed
sectors all chiral states are projected out on the orbifold.
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Table 4.1: Bundle Vectors of one particular resolution model with six GUT
generations. The last column denotes if the blow-up mode is a d = 4 state (X),
a projected out state (x) or if the twisted sector is empty in d = 4 (e).

One Particular Solution

As a final result we present one particular solution which comes very close to the
MSSM after modding out Z2,free. The corresponding bundle vectors are listed in
tab. 4.1. By construction they fulfill the assumptions we made to simplify the
search. The non-Abelian gauge group in d = 4 can be obtained by looking at
the unbroken simple roots. One possibility to choose them are the vectors,

α1 =
(

0, 0, 0, 0, 1,−1, 0, 0, 08
)

, (4.34a)

α2 =
(

0, 0, 0, 0, 0, 1,−1, 0, 08
)

, (4.34b)

α3 =

(

−1

2
,
1

2
,−1

2
,−1

2
,−1

2
,−1

2
,
1

2
,−1

2
, 08

)

, (4.34c)

α4 =
(

1,−1, 0, 0, 0, 0, 0, 0, 08
)

, (4.34d)

α5 =

(

08 − 1

2
,
1

2
,−1

2
,−1

2
,−1

2
,−1

2
,
1

2
,−1

2

)

. (4.34e)

A look at the Cartan matrix reveals that the αi, i = 1 . . . 4 span an SU(5) which
is by construction the SU(5) from the orbifold model. In the hidden sector an
SU(2) spanned by α5 remains. The summary of the massless chiral spectrum is
given by
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# irrep
202 (1, 1)
8 (5̄, 1)
2 (5, 1)
6 (10, 1)
20 (1, 2)

.

For more details see appendix C. Now we mod out Z2,free and switch on the
Wilson line W . Even though on a CY the first Betti number vanishes, we have
created a non-contractible cycle, i.e. the one which is closed by Z2,free, around
which the Wilson line can wrap. Since this resolution model is related to the
orbifold model, we still requireW to be of the form (2.58), i.e. it is half the second
Wilson line plus an arbitrary half lattice vector. Let us first try W = W2/2. This
results in a breaking of the roots α3 and α5. In the visible sector we obtain the
desired GUT → SM breaking where α1 and α2 span SU(3)C , α4 spans SU(2)L

and the standardly embedded hypercharge generator tY = 2α1+4α2+6α3+3α4 is
the same as in (2.68). Unfortunately, W also breaks the remaining non-Abelian
part of the hidden sector, but this can be avoided by adding a half lattice vector,
e.g.,

W ′ =
W2

2
+

(

08, 0, 0,−1

2
,−1

2
, 0, 0, 0, 0

)

=

(

−1

2
,−1

2
, 0 − 1

2
,−1

4
,−1

4
,−1

4
,−1

4
, −1

8
,
3

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8

)

.

(4.35)

W ′ does the same as W in the visible sector but also leaves the hidden SU(2)
alive.

Finally we obtain three families of SU(3)C × SU(2)L × U(1)Y from the 10’s
and six of the 5̄’s. The 5’s and the remaining two 5̄’s will become a pair of up-
and down-Higgses plus the triplets which yet have to be decoupled. So up to the
doublet-triplet splitting we found the exact MSSM spectrum. We further have
ten hidden SU(2) doublets and one hundred and one non-Abelian singlets which
can act e.g. as right-handed neutrinos.



Chapter 5

Conclusions

In this thesis we have studied heterotic model building on the Z2 ×Z2 orbifolds
and on its resolved CY manifold. The Z2,free symmetry allows us to build new
kinds of models with methods of gauge symmetry breaking that have not yet
been investigated in orbifold constructions. The probably most important result
is that we have obtained a way of breaking an SU(5) GUT to the SM which does
not lead to an anomalous hypercharge in blow-up. We first found that on the
orbifold there exist models which contain the MSSM in its massless spectrum.
Motivated by this we could construct models on the resolution which come even
closer to the MSSM. The number of these resolution models is enormous and they
differ by their amount of chiral matter (i.e. SM families) and we need brother
and perhaps even grandchildren models to explain this. Nevertheless the model
search was not complete due to our limited technical possibilities. Perhaps one
day a quantum computer can give us the possibility to perform a complete search
and to figure out an MSSM model with best properties.

In the identification of the blow-up modes we saw that for a complete blow-up
it is necessary to allow six-dimensional fields, which have no massless four-
dimensional mode, to act as blow-up mode and obtain a vev. However, it is
not completely clear if this is allowed and how such a vev should look like.

Another result of this thesis is that the Kähler moduli dictate the topology of
the resolved manifold. For a realistic model it should be possible to stabilize the
moduli such that the Bianchi identities of the corresponding topology are solved
by the gauge flux. But this issue is yet far from being realized. Probably to
this aim we need “stringy geometry” which can describe the regime between the
stringy construction at the orbifold point and the SUGRA approach for small
curvatures.
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Appendix A

Group Theory

We want to present some important properties of the Lie algebras which appear
in the thesis. A complete analysis together with a huge collection of group tables
can be found in [30].

E8

The E8 root lattice is the only eight-dimensional even and self dual lattice. It is
spanned by the roots

(

±1,±1, 0, 0, 0, 0, 0, 0
)

, (A.1a)

(

[

1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

]

)

. (A.1b)

We again use the notations that the underline denotes permutations and the
rectangular brackets denote even number of sign flips. Note that the roots all
have length square equal to 2. A set of simple roots is given by,

α1 =
(

0, 1,−1, 0, 0, 0, 0, 0
)

, (A.2a)

α2 =
(

0, 0, 1,−1, 0, 0, 0, 0
)

, (A.2b)

α3 =
(

0, 0, 0, 1,−1, 0, 0, 0
)

, (A.2c)

α4 =
(

0, 0, 0, 0, 1,−1, 0, 0
)

, (A.2d)

α5 =
(

0, 0, 0, 0, 0, 1,−1, 0
)

, (A.2e)

α6 =
(

0, 0, 0, 0, 0, 0, 1,−1
)

, (A.2f)

α7 =
(

0, 0, 0, 0, 0, 0, 1, 1
)

, (A.2g)

α8 =
(1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,
1

2

)

. (A.2h)
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They lead to the Dynkin diagram,

α1 α2 α3 α4 α5 α6

α7

α8 .

The root vectors are the weight vectors of the 248 which is at the same time
the fundamental and the adjoint representation. It is convenient to characterize
an irreducible representation (irrep) by the Dynkin label of its highest weight
(DLHW). The DLHW of the 248 of E8 is [1, 0, 0, 0, 0, 0, 0, 0].

SO(8)

SO(8) is of particular interest since it the little group of ten-dimensional massless
particles. The Dynkin diagram is

α1

α2

α3

α4

.

Its symmetry implies that the dimensions of many irreps are equal so in order
to distinguish them we label them with indices, V for vectorial, S for spinorial
and C for conjugate spinorial. The most important non-trivial irreps are listed
below.

irrep weights DLHW
8V

(

±1, 0, 0, 0
)

[1, 0, 0, 0]

8S

( [

1
2
, 1

2
, 1

2
, 1

2

] )

[0, 1, 0, 0]

8C

( [

−1
2
, 1

2
, 1

2
, 1

2

] )

[0, 0, 1, 0]

28
(

±1 ± 1, 0, 0
)

[0, 0, 0, 1]

Note that the 28 is the adjoint and hence its weights are the roots.

SU(N)

In the models considered in this thesis the non-Abelian part of the d = 4 gauge
group G4 was made out of SU(N) factors. Thus we also discuss them and their
irreps which can appear here. Decomposing the 248 of E8 results in the adjoint
of G4 and some irreps. It turns out that the DLHW of these irreps contain only
zeros and one “1”. The Dynkin diagram of SU(N) is

α1 α2 α3 αn−1
· · ·

.
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The relevant irreps are

irrep DLHW
N [1, 0, . . . , 0]

N̄ [0, . . . , 0, 1]

N2 − 1 [1, 0, . . . , 0, 1]
(

N

i

)

[0, . . . , 0, 1
↑

i-th

, 0, . . . , 0]

.

Note that the
(

N

i

)

is the antisymmetrized i-fold product of the fundamental N.
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Appendix B

Details of the Orbifold Model

We give an overview of the complete massless chiral spectrum of the orbifold
model presented in sec. 2.5. The first column shows the irrep under the non-
Abelian part of the d = 4 gauge group, SU(5) × SU(4) × SU(4). The second
column shows the U(1) charges of the states using the following basis of U(1)
directions:

U(1)0 = (−2,−2,−4,−2, 2, 2, 2, 4,−1,−1, 0, 0, 0, 0,−1,−1) , (B.1a)

U(1)1 = (−4,−4,−26, 38,−2,−2,−2,−10,−2,−2, 0, 0, 0, 0,−2,−2) , (B.1b)

U(1)2 = (−28,−28,−68, 0, 24, 24, 24, 44, 366, 366, 0, 0, 0, 0,−14,−14) , (B.1c)

U(1)3 = (−14,−14,−34, 0, 12, 12, 12, 22, 0, 0, 0, 0, 0, 0, 176, 176) , (B.1d)

U(1)4 = (74, 74,−34, 0, 12, 12, 12, 22, 0, 0, 0, 0, 0, 0, 0, 0) , (B.1e)

U(1)5 = (0, 0,−2, 0,−8,−8,−8, 10, 0, 0, 0, 0, 0, 0, 0, 0) . (B.1f)

U(1)0 is the anomalous one.

Untwisted Sector

(1,1,1) (4, 8, 56, 28,−148, 0)

(5,1,1) (4,−4, 48, 24, 24,−16)

(5̄,1,1) (−4, 4,−48,−24,−24, 16)

(1,1,1) (−4,−8,−56,−28, 148, 0)

(5,1,1) (6, 30, 96, 48,−40, 2)

(1,1,1) (2,−26, 8, 4,−84,−18)

(5̄,1,1) (−6,−30,−96,−48, 40,−2)

(1,1,1) (−2, 26,−8,−4, 84, 18)

(5̄,1,1) (−2,−22,−40,−20,−108,−2)

(1,1,1) (2, 34, 48, 24,−64, 18)

(5,1,1) (2, 22, 40, 20, 108, 2)

(1,1,1) (−2,−34,−48,−24, 64,−18)
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P
P

E
N

D
IX

B
.

D
E

T
A

IL
S

O
F

T
H

E
O

R
B

IF
O

L
D

M
O

D
E

L

F1,11,F1,22 Sector

(10,1,1) (−2, 2,−24,−12,−12, 8)

(5,1,1) (−4, 10,−44,−22,−22,−10)

(1,1,1) (8,−14, 92, 46, 46,−6)

F1,13,F1,24 Sector

(1,1,1) (4, 8,−324,−162,−74, 0)

(1,1,1) (0, 0, 380, 190,−74, 0)

(1,6,1) (−2,−4,−28,−14, 74, 0)

F1,14,F1,23 Sector

(1,4,1) (0, 30, 210, 105, 17, 1)

(1,4,1) (−2,−34, 142, 71,−17,−1)

F1,31,F1,42 Sector

(1, 4̄,1) (−4,−8,−246, 60,−28,−6)

(1,1, 4̄) (−3,−6,−232,−116,−28,−6)

F1,32,F1,41 Sector

(5̄,1,1) (0, 12, 388, 11, 11, 5)

(1,1,1) (−4,−8,−436,−35,−35, 11)

(1,1,1) (0,−30, 360,−3, 85, 5)

(1,1,1) (−4, 22,−416,−25, 63,−5)

F1,33,F1,44 Sector

(1,1,4) (−3,−6,−232,−116,−28,−6)

(1, 4̄,1) (−4,−8, 134,−116,−28,−6)

F1,34,F1,43 Sector

(5̄,1,1) (0, 12, 8, 187, 11, 5)

(1,1,1) (−4,−8,−56,−211,−35, 11)

(1,1,1) (0,−30,−20, 173, 85, 5)

(1,1,1) (−4, 22,−36,−201, 63,−5)

F2,11,F2,22,F2,31,F2,42 Sector

(5̄,1,1) (3, 3,−340, 13,−31,−4)

(1,1,1) (−5,−25, 300,−33,−77, 2)

F2,12,F2,21,F2,32,F2,41 Sector

(1,4,1) (−5, 5, 130,−118, 14, 3)

(1,1,4) (−6, 3, 116, 58, 14, 3)

F2,13,F2,24,F2,33,F2,44 Sector

(1,1,1) (3,−39, 12,−177, 43,−4)

(1,1,1) (−5, 5,−60, 153, 21,−14)

F2,14,F2,23,F2,34,F2,43 Sector

(1,1, 4̄) (−6, 3, 116, 58, 14, 3)

F3,11,F3,22,F3,31,F3,42 Sector

(5̄,1,1) (−1,−5, 364,−1, 43,−4)

(1,1,1) (−5,−25,−460,−47,−3, 2)

(1,1,1) (1,−13, 384, 9, 53, 14)

(1,1,1) (−3, 39,−392,−13, 31, 4)

F3,12,F3,21,F3,32,F3,41 Sector

(1, 4̄,1) (−3, 9,−222, 72,−60, 3)

F3,14,F3,23,F3,34,F3,43 Sector

(5,1,1) (−3, 27,−20,−10,−54,−1)

(1,1,1) (9, 3, 116, 58, 14, 3)

(10,1,1) (−3,−15,−48,−24, 20,−1)



Appendix C

Details of the Resolution Model

We present the details of the massless spectrum of the six-generation GUT model
on the resolution, introduced in sec. 4.3. The simple roots of the gauge group
SU(5) × SU(2) are given in (4.34). They can be used to obtain all states within
the irreps by appropriate subtractions. States with zero multiplicity are not
considered. States with negative multiplicity are the CPT conjugates of the
states mentioned here. First we list the chiral visible sector:

highest weight multiplicity irrep
(

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
)

2 (1, 1)
(

0, 0,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
)

4 (1, 1)
(

0, 0,−1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
)

6 (10, 1)
(

0, 0,−1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
)

8 (1, 1)
(

0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
)

16 (1, 1)
(

1
2
, 1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 0, 0, 0, 0, 0, 0, 0, 0

)

4 (1, 1)
(

1
2
, 1

2
, 1

2
,−1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 0, 0, 0, 0, 0, 0, 0, 0

)

8 (1, 1)
(

1
2
, 1

2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 0, 0, 0, 0, 0, 0, 0, 0

)

8 (1, 1)
(

1
2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 0, 0, 0, 0, 0, 0, 0, 0

)

2 (5, 1)
(

− 1
2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 0, 0, 0, 0, 0, 0, 0, 0

)

8 (1, 1)
(

− 1
2
,−1

2
,−1

2
, 1

2
, 1

2
,−1

2
,−1

2
,−1

2
, 0, 0, 0, 0, 0, 0, 0, 0

)

4 (5̄, 1)
(

1
2
, 1

2
, 1

2
,−1

2
, 1

2
,−1

2
,−1

2
,−1

2
, 0, 0, 0, 0, 0, 0, 0, 0

)

4 (5̄, 1)
(

1
2
, 1

2
, 1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
, 0, 0, 0, 0, 0, 0, 0, 0

)

4 (1, 1)
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Finally, the chiral hidden sector:

highest weight multiplicity irrep
(

0, 0, 0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 0, 0, 0, 0
)

8 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 1, 0,−1, 0, 0, 0, 0, 0
)

4 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0
)

2 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
)

2 (1, 2)
(

0, 0, 0, 0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 0, 0, 0
)

2 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0,−1, 0, 0, 0, 0
)

10 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0,−1, 0, 0, 0
)

2 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0
)

4 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1
)

4 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0
)

4 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 1, 0, 0, 0
)

6 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 1
)

10 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0
)

2 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 1, 0, 0
)

4 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,−1
)

2 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0
)

2 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,−1
)

2 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0
)

2 (1, 2)
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,−1
)

4 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
)

4 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0,−1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
,−1

2

)

2 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 1
2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
,−1

2

)

2 (1, 2)
(

0, 0, 0, 0, 0, 0, 0, 0,−1
2
, 1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)

8 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 1
2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)

8 (1, 2)
(

0, 0, 0, 0, 0, 0, 0, 0,−1
2
, 1

2
, 1

2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2

)

4 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0,−1
2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2
, 1

2
, 1

2

)

4 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 1
2
, 1

2
,−1

2
, 1

2
,−1

2
, 1

2
, 1

2
, 1

2

)

4 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0,−1
2
, 1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2
, 1

2

)

2 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0,−1
2
,−1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2
,−1

2

)

2 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 1
2
, 1

2
,−1

2
, 1

2
, 1

2
,−1

2
, 1

2
, 1

2

)

12 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0,−1
2
,−1

2
,−1

2
, 1

2
, 1

2
,−1

2
, 1

2
, 1

2

)

2 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0,−1
2
,−1

2
, 1

2
,−1

2
, 1

2
,−1

2
, 1

2
, 1

2

)

2 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 1
2
, 1

2
, 1

2
, 1

2
,−1

2
,−1

2
, 1

2
, 1

2

)

4 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0,−1
2
,−1

2
, 1

2
, 1

2
,−1

2
,−1

2
, 1

2
, 1

2

)

4 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0, 1
2
,−1

2
,−1

2
, 1

2
,−1

2
,−1

2
, 1

2
, 1

2

)

8 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0,−1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
,−1

2
, 1

2

)

4 (1, 2)
(

0, 0, 0, 0, 0, 0, 0, 0,−1
2
,−1

2
, 1

2
, 1

2
, 1

2
,−1

2
,−1

2
, 1

2

)

2 (1, 2)
(

0, 0, 0, 0, 0, 0, 0, 0, 1
2
, 1

2
, 1

2
, 1

2
,−1

2
,−1

2
,−1

2
,−1

2

)

2 (1, 1)
(

0, 0, 0, 0, 0, 0, 0, 0,−1
2
,−1

2
, 1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2

)

4 (1, 1)
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[8] L. E. Ibáñez, The Search for a Standard Model SU(3)C × SU(2)L ×
U(1)Y Superstring: An Introduction to Orbifold Constructions, CERN-
th.4769/87, 1987.
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[10] L. E. Ibáñez, J. E. Kim, H. P. Nilles, F.Quevedo, Orbifold Compactifications
with Three Families of SU(3)C×SU(2)L×U(1)Y Phys. Lett., B191:282-286,
1987.

[11] M. B. Green, J. H. Schwarz, Anomaly Cancellations in Supersymmetric
D = 10 Gauge Theory and Superstring Theory, Phys. Lett. B 149:117-22,
1984.

71



72 BIBLIOGRAPHY

[12] A. Strominger, Yukawa Couplings in Superstring Compactification, Phys.
Rev. Lett. 55,2547-2550,1985.

[13] E. Zaslow, Topological Orbifold Models and Quantum Cohomology Rings,
Commun. Math. Phys. 156, 301-331 (1993).

[14] P. S. Aspinwall, B. R. Greene, D. R. Morrison Measuring small distances in
N=2 sigma models, Nucl. Phys. B420 (1994) 184242, hep-th/9311042, 1993.

[15] W. Fulton, Introduction to Toric Varieties, Princton University Press, 1993.

[16] O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sánchez, M. Ratz, P. K. S.
Vaudrevange, A. Wingerter, A Mini-Landscape of exact MSSM Spectra in
Heterotic Orbifolds, hep-th/0611095v2, 2006.

[17] O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sánchez, M. Ratz, P. K. S.
Vaudrevange, A. Wingerter, The Heterotic Road to the MSSM with R parity,
arXiv:0708.2691v1, 2007.

[18] O. Lebedev, H. P. Nilles, S. Ramos-Sánchez, M. Ratz, P. K. S. Vaudrevange,
Heterotic mini-landscape(II): completing the search for MSSM vacua in aZ6 orbifold, arXiv:0807.4384v1, 2008.

[19] W. Buchmüller, K. Hamaguchi, O. Lebedev, M. Ratz, Supersymmetric
Standard Model from the Heterotic String., hep-ph/0511035, 2005.

[20] W. Buchmüller, K. Hamaguchi, O. Lebedev, M. Ratz, Supersymmetric
Standard Model from the Heterotic String (II)., hep-th/0606187, 2006.
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