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Introduction

¢ Instanton solutions create a new problem in QCD.

e A new symmetry is introduced, the axial U(1)pg Symmetry.

e This includes the introduction of a new dynamical
pseudoscalar field and thus a particle, the axion a(x).
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Formulae

 Mapping f:S% — S3

e Winding number:

1
n=—25 /d91d02d03tf (€ikAIAAK)

where A; = f~1(xo, X)dif (X0, X)

e Consider

1 17 17
l: = iié;itr (F:H/ F:M )
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Formulae

e Sg = [d*xL should be finite s.t. for [X| — oc:
F.(x) — 0and A,(x) — U~t9,U.

e Instantons correspond to Us with nontrivial winding
number!

e By comparison:
/d"’x tr(F/“’If/“’) = ;/d"’x OHKH
with

K = 2t [(UTB,U)(UBU)(U0,U)]
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Formulae

e Thus:

n= 16171'2 /d“x tr (F“"ﬁ“”)

e We have multiple vacua that are characterized by their
winding number n.

e Instantons can be seen as the connection between

vacuum states as they have winding numbers themselves.

e Consider
Gi[n) =[n+1),

where G, is a gauge transformation of winding number 1.
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Instantons - The #-vacuum

N ;

[n=12> |n> [n+1> In+2>

¢ Transition amplitude:

T = (ne "' |m), :/[dA]n_m exp [—i/(£+J -A)d4x}

e Semiclassically this leads to:

8W2n]

T =exp[—Sg| = exp [— o2
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Instantons - The #-vacuum

¢ [G1,H] = 0 because of the gauge invariance.

e Then:

0) =3 e ™)

st. |
Gy 10) = €'’ |0)

¢ This #-vacuum leads to an adequate formulation of the
theory.
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Instantons - The #-vacuum

¢ Transition amplitude:

<0/‘ elet ‘9 Zelme’ —inf <m’ e —iHt ’n>

m,n

=) e i(nmmigim(®"=0) / [dA],_,, exp [i /(ﬁ +J -A)d4x]
m,n

e Result:

Letf = 3272

w (Froer)
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The U(1) problem

e For two quark flavours and the chiral limit m, 4 — O the
Lagrangian possesses the symmetry:

SU(Z)L X SU(Z)R X U(l)v X U(l)A

- SU(2). x SU(2)r being the chiral symmetry

- U(1)y leading to baryon number conservation via the
current JB = Uy,u + d,d

- U(1)a leading to a current J> = U,ysu + d~,7sd
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The U(1) problem

e An invisible axial symmetry means that it should be
broken. Thus we expect a Goldstone boson.

e But: There is no fourth pion except the n’ which is much
too heavy to be a Goldstone boson.

— This is the U(1) or n-mass problem.

e Solution: The instantons can break U(1) without leading to
a Goldstone boson.
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The strong CP problem

The instanton solution to the U(1) problem generates a
new problem, namely the strong CP problem.

The #-term in the effective Lagrangian violates P.

Experimentally: no CP violation in the strong interaction
has been found.

Comparison experiment vs. theory:

0 < 107°

So why should there be such a strong bound on 67?

12/31



With massless quarks

e Remember: Lo = £ + ﬁtr (|:W|E;w)

e Consider an axial U(1)-transformation on the quark fields:

q— eiowg,q
e Axial current:

= _Gvs9 = [GrVu0r — G 740L]
q q

e Yielding to

. N;g? .
wi5 _ uv
o, 167r2tr (FWF )

with N¢ being the number of massless quarks.
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With massless quarks

e Thus, for
0

OZZ—TN](

the 6-term of the effective Lagrangian can be removed.

e Therefore, in the massless quark case 6 would be
unphysical.
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Without massless quarks

e Massive case:
mgq — mae 2'*%q = mcos (2a)qq — im sin (2a)gvsq

e The second part clearly violates P and T invariance and
the mass term for quarks can be written in the following
way:

—Lm = GMijgrj + GriM; ay

e Under U(1), M no longer is hermitean:

M — e 2*M and Mt — eZoM*

15/31



Without massless quarks

e Thus: argdetM — argdetM + 2aN

e Define § = § + 2aN as it is the quantity which is invariant
under the transformation.

« 0 still has to be zero to be CP non-violating.
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Neutron dipole moment

e In L, there is a contribution to the neutron dipole moment
coming from the following graphs:
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Neutron dipole moment

e Pion nucleon interaction:

‘CTFNN = gZ_NNNTaN 7Ta

o Experiment: d, < 12-1072¢ e cm
Calculation: d, =5.2-10" 1% 9 e cm

e Therefore: § < 2-1010
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Introduction of the axion

e Solution proposed by Peccei and Quinn in 1977: make 0 a
dynamical field.

e Later on, a new pseudoscalar boson, the axion a(x), was
added by Weinberg.

e Choose 0 = a/f, with f, being the axion decay constant.

1 1
A[: — __;1Ejzitr (F:;LVI: #’ ) %‘ iié?lbéiéallfi‘F

+>G(ip—mi)aq +ﬁ“2fatr (FuFr) + 320772 tr (FuF™)
i
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Introduction of the axion
e Still to be shown: 6 =0

e The 0 vaccum is proportional to (1 — cos ). Thus § = 0
would be the correct vacuum.

e Integrating out the effect of quarks and gluons in Euclidean
space yields to:

/d“xV [0] < /d“xV [a]
e There must be aminimumata=0o0rf =0

e Thus the choice of § = 0 is justified.
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The axion as Goldstone boson

¢ Notation: - Qs = (us_,ds_) are the SU(2) doublets
- Utr, Dsr denote the SU(2) singlets
- ¢ is the doublet of the Higgs scalar fields

and f labels the generations.
e The mass term comes from:
—Ly = Qs X1gDgr + QL Yig¥Ugr + h.C.

with ¢ = iT2¢*.
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The axion as Goldstone boson

e (0]¢|0) = % ( vlgi51 > for down-like quarks

is
e (0[9|0) = % < vzg ’ > for up-like quarks

e Conditions in the SM: v; = v, and §; = —4»

1 ; 1 :
detM = det [ —v e'51X> det (v e'52Y>
<¢é ! Nel

_ @3i(01+52) %(V1v2)3 det (XY)
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The axion as Goldstone boson

Thus, we extend the SM and define two independent
scalar doublets ¢ and ¢ and get:

argdetM = 3(01 + d,) + argdet(XY)

e §=0+argdetM =0

This is exactly what we needed.

To still ensure the symmetry, suppose:
99 N (aitxr].qj’ @b — EEich21L

where 1, [, are the Peccei-Quinn charges of ¢, 1
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The axion as Goldstone boson

¢ Further transformations:
QL — eTo U, — ellv p, — eiofs
e Invariance of Ly is given if:
M +Tg="Tq,M2+ Ty =g, meaning
M+M=2Mg—-Ty—Tgqg#0

e For ¢ and ¢ acquiring the former vevs, the SSB yields a
Goldstone boson which is associated with the phase angle
of these fields.
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The axion as Goldstone boson

e Look at the neutral components of the scalar doublets:

o0 = f(V1+Pl( )) e/

ﬂ;-‘

Sie

e Thus
a(x) = [V201(x) + va1b2(x)] /v

where v = (v2 +v2)"/?
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The axion as Goldstone boson

e The orthogonal second combination gets 'eaten’ and
generates the Z-boson mass:

X(X) = [=va01(x) + vab2(x)] /v

e This finally yields to the axion-quark Yukawa coupling:

ia(x) [va = Vi
—£39 = 220 ZZmydysd + —myUasu
Y v v dd7s +v2 ulvs
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The axion as Goldstone boson

e v ~ 246 GeV from weak interaction data

e AXion mass:

My = (Vl + V2> 74 keV
V2 Vi

e Although many experiments tried to find this axion it was

not found in any reaction so far. But this is not the end of
the story.
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The invisible axion

e Two models:

i) There is the heavy quark theory. (KSVZ axion)
i) The PQ symmetry breaking scale can be separated
from the electroweak breaking scale. (DFSZ axion)

e Breaking scale:

10° GeV < fpg < 102 GeV

e This yield to 'invisibility’.
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The invisible axion

e Possible decay processes:
Formg > 2 meg:
my, — e et

For my < 2 me:
Mg — 77y

e This is a possible detection method.
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Conclusion

e The axion is a very promising idea to solve the strong
CP-violation problem.

e Even if it has not been detected this does not mean that it
cannot exist as an invisible axion.

e Could be a candidate for the dark matter in the universe.
e Further experiments are conducted.

e e.g. the CAST-experiment at CERN is searching for solar
axions.
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