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Outline of the TalkOutline of the Talk

Introduction: What do they mean by „anomaly“?

• QM formulation of current
symmetries

• Shifting integration variable

• Quantum fluctuation violates
axial vector current

• Consequences of the anomaly

Main Part:

Summary



Why „anomaly“?Why „anomaly“?

Classical symmetry QM Symmetry
Transformation

ϕ→ ϕ+ δϕ
Action Path IntegralR

Dϕ · eiS(ϕ)S(ϕ)
invariantinvariant

• The idea classical symmetry QM symmetry

became a comfortable „habit“ just think of rotations,translations etc.

• Not necessarily! QM fluctuations cause „anomalies“ = unexpected
truth



Classical treatmentClassical treatment

• Consider a Lagrangian for a single massless fermion

L = ψiγµ∂µψ Transformations ψ → eiΘψ

ψ → eiΘγ
5

ψ

Conserved Quantites:

Vector Current ∂µJ
µ = 0Jµ = ψγµψ

Axial-Vector Current ∂µJ
µ
5 = 0Jµ5 = ψγµγ5ψ



QM formulationQM formulation
• Consider two fermion-antifermion pairs being created at

and respectively

• The amplitude for this process is described by

x1
x2

• The corresponding vector currents are

Jµ(x1) = ψ(x1)γ
µψ(x1) Jν(x2) = ψ(x2)γ

νψ(x2)

• The axial vector current , x3 = 0Jλ(0) = ψ(0)γλγ5ψ(0)

h0 ¯̄TJλ5 (0)Jµ(x1)Jν(x2)¯̄ 0i



QM formulationQM formulation
• evaluation of the amplitude

results in triangle diagrams
h0 ¯̄TJλ5 (0)Jµ(x1)Jν(x2)¯̄ 0i

• Applying Feynmanrules for Fermions and taking the bose
statistics for possible vector bosons into account, we get the
amplitude in momentum space



QM formulationQM formulation

∆λµν(k1, k2) = (−1)i3
Z

d4p

(2π)4
tr(γλγ5

1

p/− q/γ
ν 1

p/− k1/γ
µ 1

p/

q = k1 + k2
+γλγ5 1

p/−q/γ
µ 1
p/−k2/γ

ν 1
p/ )

• Classical the vector currents and axial-vector current
should be conserved simultaneously

∆λµν• Since is written in momentum space and 
the currents can be Fouriertransformed

Jµ(x) =
R

d4k
(2π)4 e

ikxJµ(k)



QM formulationQM formulation

The current conservation ∂µJ
µ(x1) = 0 ∂νJ

ν(x2) = 0

∂λJ
5λ(0) = 0

Is aquivalent to k1µ∆
λµν = 0 k2ν∆

λµν = 0

qλ∆
λµν = 0



Importance of current conservationImportance of current conservation

Vector Axial vector

Q =
R
d3xJ0 Counts the fermion

number

•Introducing of a photon should
cause no troubles:

− igµρ
k21

k1µ∆
λµν = 0

• • Real world fermions are
not massless

For even the
classical symmetry is not

valid

mf 6= 0
i
k21
[ζ
k1µk1ρ
k21
− gµρ)]



It‘s getting serious…It‘s getting serious…
• Naive way to evaluate the integral

1.Term:

2.Term:

Substitute

k1µ∆
λµν(k1, k2) = (−1)i3

R
d4p
(2π)4 tr(γ

λγ5 1
p/−q/γ

ν k1/
p/−k1/

1
p/

+γλγ5 k1/
p/−q/

1
p/−k2/γ

ν 1
p/
)

k1/→ p/ − (p/ − k1/)

q = k1 + k2k1/→ (p/− k2/)− (p/− q/)

k1µ∆
λµν(k1, k2) = i

R
d4p
(2π)4 tr(γ

λγ5 1
p/−q/γ

ν 1
p/−k1/ − γλγ5 1

p/−k2/γ
ν 1
p/ )

1
(p/−k2/)−k1/



Variable shiftingVariable shifting
• If we could shift the integration variable in the 2. term

k1µ∆
λµν = 0then we would havep/→ p/− k1/

• But is the shift of the integral variable allowed here?

• Consider some arbitrary function then the difference isf(p)

+ +∞R
−∞

dp(f(p+ a)− f(p)) =
∞R

−∞
dp(a ddpf(p) + . . .)

= a(f(+∞)− f(−∞)) + . . .



Variable shiftingVariable shifting
• The integral have to be convergent or logarithmically

divergent. Here we deal with an lineary divergent integral!

• Rotate the Feynman integrand to d-dimensional Euclidian
space: R

ddEp[f(p+ a)− f(p)] =
R
ddEp[a

µ∂µf(p) + . . .]

applying Gauss‘s theorem we getR
ddEp[f(p+ a)− f(p)] = limP→∞ aµ(PµP )f(p)Sd−1(P )

Now rotating back and addopting for a 4-dim Minkowski spaceR
d4p[f(p+ a)− f(p)] = limP→∞ iaµ(PµP )f(p)(2π2P 3)



…almost hopeless…almost hopeless
f(p) = tr(γλγ5 1

p/−k2/γ
ν 1
p/ )• Obviously is

= 4i²τνσλk2τpσ
(p−k2)2p2

apllying trace theorem

aµ = −kµ1 and pluggingwith into the integralf(p)

k1µ∆
λµν = i

8π2 ²
λτσk1τk2σ = ∂µJ

µ 6= 0



Don‘t forget the physics behind!Don‘t forget the physics behind!

p/→ p/+ a/Use freedom of choice in labeling internal momenta

Calculate ∆λµν(a, k1, k2) −∆λµν(k1, k2)

Now ∆λµν(a, k1, k2) −∆λµν(k1, k2) =
i
8π2 ²

σνµλaσ + {µ, k1 ↔ ν, k2}

are independentk1, k2 a = α(k1 + k2) + β(k1 − k2)

∆λµν(a, k1, k2) = ∆
λµν(k1, k2) +

iβ
4π2 ²

λµνσ(k1 − k2)σ



Fixing the paramterFixing the paramter

we get vector current conservation

and recalling that

if we choose

k1µ∆
λµ(a, k1, k2) = 0

β
At the same time  demand a physical reasonable
outcome by fixing the parameter

k1µ∆
λµν = 0

k1µ∆
λµν(k1, k2) =

i
8π2 ²

λντσk1τk2σ

β = − 1
2



Breaking with „bad habits“Breaking with „bad habits“
After insisting on vector current conservation check if qλ∆

λµν = 0

qλ∆
λµν(a, k1, k2) = qλ∆

λµν(k1, k2) +
i
4π2 ²

µνλσk1λk2σ

Following the same calculation pattern as above we get

qλ∆
λµν(k1, k2) =

i
4π2
²µνλσk1λk2σ

Fixing  the paramter once we prevent the conservation
of the axial current qλ∆

λµν 6= 0
β

In QM  the vector current and the axial vector current
can‘t be conserved at the same time

Choose physical correct option!



ConsequencesConsequences
L = ψiγµ(∂µ − ieAµ)ψ1. Gauged theory:

with the photon fieldAµ

The result can be written then

Classical ∂µJ
µ
5 = 0

Operator capable of 
producing two photons∂µJ

µ
5 =

e2

(4π)2 ²
µνλσFµνFλσQM

2. Experimentally found decay can not occure according
to classical view

QM resolves the apparent contradiction and leads to the correct
result

π0 → 2γ



ConsequencesConsequences
3. Correction to the

classical result in the presence of a mass term:

The symmetry for L = ψ(iγµ∂µ −m)ψ ψ → eiΘγ
5

ψwith

is spoiled by the mass term

Classically ∂µJ
µ
5 = 2mψiγ

5ψ

In gauged theory with not vanishing mass the qm 
fluctuation give rise to an additional correction term

∂µJ
µ
5 = 2mψiγ

5ψ + e2

(4π)2 ²
µνλσFµνFλσ



ConsequencesConsequences
4.Square and pentagon anomaly:

Occure in non-abelian gauge theories L = ψiγµ(∂µ − ieAaµT a)ψ

∂µJ
µ
5 =

g2

(4π)2 ²
µνλσtrFµνFλσ with Fµν = F

a
µνT

a

contains terms cubic
and quartic in A



ConsequencesConsequences
5. Nonrenormalization

Add a scalar field to the free Lagrangian
higher order loop

diagramsL = ψ(iγµ∂µ −m)ψ + fϕψψ
multiply withqλ∆

λµν(a, k1, k2)

1 + h(f, e, . . .)

Adler  and Barden: h(f, e . . .) = 0

Nonrenormalization

Heuristically: seven fermion
propagators

Integral sufficiantly convergent

Shift of integration variable 
allowed

qλ∆
λµν
3loops(k1, k2;W1,W2) = 0



ConsequencesConsequences
6.Suggestion about quarks:

Nonrenormalization decay amplitude for π0 → 2γ

the only contributing

Quark model of 60‘s with an 
infinite number of Feynman
diagrams



SummarySummary
• Classical symmetry does not imply the same symmetry in 

quantum mechanics

• The shift of the integration variable is not allowed in  
(lineary) divergent integrals

• In Qm the vector current is conserved and the
axial vector current is not conserved

• QM confirmation of the neutral pion decay



Thank you for your attentionThank you for your attention



Appendix AAppendix A
• Polarization and Photon propogator:

i
k21
[ζ(

k1µk1ρ
k21
− gµρ)]propagator for massless spin 1 bosons:

Polarization vectors ²µ(p), ²
?
µ(p)

Relation between propagator and 
polarization vectors

P
²µ(p)²

?
v(p) = gµν



Appendix BAppendix B
Gauß Integral:

R
ddEpa

µ∂µf(p) =
R
d(Sd−1)µaµf(p) =

=
R
d(Sd−1)

pµ
p a

µf(p) = limP→∞ aµ(
Pµ
P )f(p)Sd−1(P )



Appendix CAppendix C
• Shifting internal momenta:

+ {µ, k1 ↔ ν, k2}

∆λµν(a, k1, k2) = (−1)i3
R

d4p
(2π)4

tr(γλγ5 1
p/+a/−q/γ

ν 1
p/+a/−k1/γ

µ 1
p/+a/

)
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