Chiral Anomaly

Kathryn Polejaeva

Seminar on Theoretical Particle Physics Springterm 2006 Bonn University

Outline of the Talk

Introduction: What do they mean by "anomaly"?

Main Part:

- QM formulation of current symmetries
- Shifting integration variable
- Quantum fluctuation violates axial vector current
- Consequences of the anomaly

Why "anomaly"?

• The idea classical symmetry — QM symmetry became a comfortable "habit" just think of rotations,translations etc.

• Not necessarily! QM fluctuations cause "anomalies" = unexpected truth

Classical treatment

• Consider a Lagrangian for a single massless fermion

Conserved Quantites:

Vector Current

$$J^{\mu} = \overline{\psi} \gamma^{\mu} \psi \qquad \qquad \partial_{\mu} J^{\mu} = 0$$

Axial-Vector Current

$$J_5^{\mu} = \overline{\psi} \gamma^{\mu} \gamma^5 \psi \qquad \partial_{\mu} J_5^{\mu} = 0$$

- Consider two fermion-antifermion pairs being created at x_1 and x_2 respectively
 - The corresponding vector currents are

 $J^{\mu}(x_1) = \overline{\psi}(x_1)\gamma^{\mu}\psi(x_1) \qquad \qquad J^{\nu}(x_2) = \overline{\psi}(x_2)\gamma^{\nu}\psi(x_2)$

• The axial vector current $~~J^\lambda(0)=\overline{\psi}(0)\gamma^\lambda\gamma^5\psi(0)$, $~~x_3=0$

• The amplitude for this process is described by

$$\langle 0 \left| T J_5^{\lambda}(0) J^{\mu}(x_1) J^{\nu}(x_2) \right| 0 \rangle$$

• $\langle 0 | T J_5^{\lambda}(0) J^{\mu}(x_1) J^{\nu}(x_2) | 0 \rangle$ evaluation of the amplitude results in triangle diagrams

• Applying Feynmanrules for Fermions and taking the bose statistics for possible vector bosons into account, we get the amplitude in momentum space

$$\begin{aligned} \Delta^{\lambda\mu\nu}(k_1,k_2) &= (-1)i^3 \int \frac{d^4p}{(2\pi)^4} tr(\gamma^{\lambda}\gamma^5 \frac{1}{\not p - \not q} \gamma^{\nu} \frac{1}{\not p - k_{\not l}} \gamma^{\mu} \frac{1}{\not p} \\ q &= k_1 + k_2 \\ &+ \gamma^{\lambda}\gamma^5 \frac{1}{\not p - \not q} \gamma^{\mu} \frac{1}{\not p - k_{\not l}} \gamma^{\nu} \frac{1}{\not p} \end{aligned}$$

- Classical the vector currents and axial-vector current should be conserved simultaneously
- Since $\Delta^{\lambda\mu\nu}$ is written in momentum space and the currents can be Fouriertransformed

$$J^{\mu}(x) = \int \frac{d^4k}{(2\pi)^4} e^{ikx} J^{\mu}(k)$$

The current conservation

$$\partial_{\mu}J^{\mu}(x_1) = 0$$
 $\partial_{\nu}J^{\nu}(x_2) = 0$

$$\partial_{\lambda}J^{5\lambda}(0) = 0$$

Is aquivalent to $k_{1\mu}\Delta^{\lambda\mu\nu} = 0$ $k_{2\nu}\Delta^{\lambda\mu\nu} = 0$

$$q_{\lambda} \Delta^{\lambda \mu \nu} = 0$$

Importance of current conservation

Vector

• $Q = \int d^3x J^0$ Counts the fermion number

•Introducing of a photon should cause no troubles:

$$\frac{\frac{i}{k_1^2} \left[\zeta \frac{k_{1\mu} k_{1\rho}}{k_1^2} - g_{\mu\rho} \right) \right]}{\int k_{1\mu} \Delta^{\lambda\mu\nu} = 0}$$
$$-\frac{\frac{ig_{\mu\rho}}{k_1^2}}{k_1^2}$$

Axial vector

• Real world fermions are <u>not</u> massless

For $m_f \neq 0$ even the classical symmetry is not valid

It's getting serious...

 $+\gamma^{\lambda}\gamma^{5}rac{k_{l}}{\not p-\not q}rac{1}{\not p-k_{2}}\gamma^{
u}rac{1}{\not p})$

• Naive way to evaluate the integral

$$k_{1\mu}\Delta^{\lambda\mu\nu}(k_1,k_2) = (-1)i^3 \int \frac{d^4p}{(2\pi)^4} tr(\gamma^{\lambda}\gamma^5 \frac{1}{\not p - \not q}\gamma^{\nu} \frac{k \not q}{\not p - k \not q} \frac{1}{\not p}$$

Substitute

1.Term: $k \not l \rightarrow \not p - (\not p - k \not l)$

2.Term:
$$k_{\not l}
ightarrow (\not p - k_{\not 2}) - (\not p - \not q)$$
 $q = k_1 + k_2$

$$k_{1\mu}\Delta^{\lambda\mu\nu}(k_{1},k_{2}) = i\int \frac{d^{4}p}{(2\pi)^{4}} tr(\gamma^{\lambda}\gamma^{5}\frac{1}{\not p-\not q}\gamma^{\nu}\frac{1}{\not p-k_{1}} - \gamma^{\lambda}\gamma^{5}\frac{1}{\not p-k_{2}}\gamma^{\nu}\frac{1}{\not p})$$

$$\uparrow$$

$$\frac{1}{(\not p-k_{2})-k_{1}}$$

Variable shifting

• If we could shift the integration variable in the 2. term

 $\not p
ightarrow \not p - k_{I}'$ then we would have $k_{1\mu} \Delta^{\lambda\mu
u} = 0$

- But is the shift of the integral variable allowed here?
- Consider some arbitrary function f(p) then the difference is

$$\int_{-\infty}^{+\infty} dp (f(p+a) - f(p)) = \int_{-\infty}^{+\infty} dp (a \frac{d}{dp} f(p) + \ldots)$$
$$= a (f(+\infty) - f(-\infty)) + \ldots$$

Variable shifting

- The integral have to be convergent or logarithmically divergent. Here we deal with an lineary divergent integral!
- Rotate the Feynman integrand to d-dimensional Euclidian space: $\int d_E^d p[f(p+a) - f(p)] = \int d_E^d p[a^\mu \partial_\mu f(p) + ...]$

applying Gauss's theorem we get

$$\int d_{E}^{d} p[f(p+a) - f(p)] = \lim_{P \to \infty} a^{\mu}(\frac{P_{\mu}}{P}) f(p) S_{d-1}(P)$$

Now rotating back and addopting for a 4-dim Minkowski space

$$\int d^4 p[f(p+a) - f(p)] = \lim_{P \to \infty} i a^{\mu} (\frac{P_{\mu}}{P}) f(p) (2\pi^2 P^3)$$

...almost hopeless

• Obviously is
$$f(p) = tr(\gamma^{\lambda}\gamma^{5}\frac{1}{p-k_{2}}\gamma^{\nu}\frac{1}{p})$$

apllying trace theorem
$$= \frac{4i\epsilon^{\tau\nu\sigma\lambda}k_{2\tau}p_{\sigma}}{(p-k_2)^2p^2}$$

with $a^{\mu} = -k_{1}^{\mu}$ and plugging f(p) into the integral

$$k_{1\mu}\Delta^{\lambda\mu\nu} = \frac{i}{8\pi^2}\epsilon^{\lambda\tau\sigma}k_{1\tau}k_{2\sigma} = \partial_{\mu}J^{\mu} \neq 0$$

Don't forget the physics behind!

Use freedom of choice in labeling internal momenta $p \to p + q$

Calculate
$$\Delta^{\lambda\mu
u}(a,k_1,k_2) - \Delta^{\lambda\mu
u}(k_1,k_2)$$

Now
$$\Delta^{\lambda\mu\nu}(a,k_1,k_2) - \Delta^{\lambda\mu\nu}(k_1,k_2) = \frac{i}{8\pi^2} \epsilon^{\sigma\nu\mu\lambda} a_{\sigma} + \{\mu,k_1\leftrightarrow\nu,k_2\}$$

 k_1, k_2 are independent $a = \alpha(k_1 + k_2) + \beta(k_1 - k_2)$

$$\Delta^{\lambda\mu\nu}(a,k_1,k_2) = \Delta^{\lambda\mu\nu}(k_1,k_2) + \frac{i\beta}{4\pi^2} \epsilon^{\lambda\mu\nu\sigma}(k_1-k_2)_{\sigma}$$

Fixing the paramter

At the same time demand a physical reasonable outcome by fixing the parameter β

$$k_{1\mu}\Delta^{\lambda\mu\nu} = 0$$

and recalling that

$$k_{1\mu}\Delta^{\lambda\mu\nu}(k_1,k_2) = \frac{i}{8\pi^2}\epsilon^{\lambda\nu\tau\sigma}k_{1\tau}k_{2\sigma}$$

if we choose

$$\beta = -\frac{1}{2}$$

we get vector current conservation

$$k_{1\mu}\Delta^{\lambda\mu}(a,k_1,k_2) = 0$$

Breaking with "bad habits"

After insisting on vector current conservation check if $q_{\lambda}\Delta^{\lambda\mu\nu} = 0$

$$q_{\lambda}\Delta^{\lambda\mu\nu}(a,k_1,k_2) = q_{\lambda}\Delta^{\lambda\mu\nu}(k_1,k_2) + \frac{i}{4\pi^2}\epsilon^{\mu\nu\lambda\sigma}k_{1\lambda}k_{2\sigma}$$

Following the same calculation pattern as above we get

$$q_{\lambda} \Delta^{\lambda\mu\nu}(k_1, k_2) = \frac{i}{4\pi^2} \epsilon^{\mu\nu\lambda\sigma} k_{1\lambda} k_{2\sigma}$$

Fixing the paramter β once we prevent the conservation of the axial current $q_{\lambda} \Delta^{\lambda \mu \nu} \neq 0$

In QM the vector current and the axial vector current can't be conserved at the same time

Choose physical correct option!

1. Gauged theory:
$$\mathcal{L} = \overline{\psi} i \gamma^{\mu} (\partial_{\mu} - i e A_{\mu}) \psi$$

with A_{μ} the photon field The result can be written then

2. Experimentally found $\pi^0 \rightarrow 2\gamma$ decay can not occure according to classical view

QM resolves the apparent contradiction and leads to the correct result

3. <u>Correction to the</u> <u>classical result in the presence of a mass term:</u>

The symmetry for
$$\mathcal{L} = \overline{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi$$
 with $\psi \to e^{i\Theta\gamma^{5}}\psi$ is spoiled by the mass term

<u>Classically</u> $\partial_{\mu}J_{5}^{\mu} = 2m\overline{\psi}i\gamma^{5}\psi$

In gauged theory with not vanishing mass the qm fluctuation give rise to an additional correction term

$$\partial_{\mu}J_{5}^{\mu} = 2m\overline{\psi}i\gamma^{5}\psi + \frac{e^{2}}{(4\pi)^{2}}\epsilon^{\mu\nu\lambda\sigma}F_{\mu\nu}F_{\lambda\sigma}$$

4. Square and pentagon anomaly:

Occure in non-abelian gauge theories $\mathcal{L} = \overline{\psi} i \gamma^{\mu} (\partial_{\mu} - i e A^a_{\mu} T^a) \psi$

5. Nonrenormalization

Add a scalar field to the free Lagrangian higher order loop $\mathcal{L} = \psi (i\gamma^{\mu}\partial_{\mu} - m)\psi + f\varphi\overline{\psi}\psi$ diagrams multiply $q_{\lambda} \Delta^{\lambda \mu \nu}(a, k_1, k_2)$ with 1 + h(f, e, ...)Adler and Barden: h(f, e...) = 0Nonrenormalization Heuristically: seven fermion propagators

- Integral sufficiantly convergent
- Shift of integration variable allowed

6. Suggestion about quarks:

Nonrenormalization

the only contributing

- decay amplitude for $\pi^0 \to 2\gamma$

Quark model of 60's with an infinite number of Feynman diagrams

Summary

- Classical symmetry does not imply the same symmetry in quantum mechanics
- The shift of the integration variable is not allowed in (lineary) divergent integrals
- In Qm the vector current is conserved and the axial vector current is not conserved
- QM confirmation of the neutral pion decay

Thank you for your attention

Appendix A

• <u>Polarization and Photon propogator:</u>

propagator for massless spin 1 bosons:

$$\frac{i}{k_1^2} [\zeta(\frac{k_{1\mu}k_{1\rho}}{k_1^2} - g_{\mu\rho})]$$

Polarization vectors

$$\epsilon_{\mu}(p), \epsilon^{\star}_{\mu}(p)$$

Relation between propagator and polarization vectors

 $\sum \epsilon_{\mu}(p)\epsilon_{v}^{\star}(p) = g_{\mu\nu}$

Gauß Integral:

$$\int d_E^d p a^\mu \partial_\mu f(p) = \int d(S_{d-1})_\mu a^\mu f(p) =$$

$$= \int d(S_{d-1}) \frac{p_{\mu}}{p} a^{\mu} f(p) = \lim_{P \to \infty} a^{\mu} (\frac{P_{\mu}}{P}) f(p) S_{d-1}(P)$$

Appendix C

• Shifting internal momenta:

 $\Delta^{\lambda\mu\nu}(a,k_1,k_2) = (-1)i^3 \int \frac{d^4p}{(2\pi)^4} tr(\gamma^{\lambda}\gamma^5 \frac{1}{\not p + \not q - \not q} \gamma^{\nu} \frac{1}{\not p + \not q - k_{f}} \gamma^{\mu} \frac{1}{\not p + \not q})$

 $+ \{\mu, k_1 \leftrightarrow \nu, k_2\}$