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What is the Optical Theorem?

Motivation:

The Optical Theorem:

Im f(θ = 0) =
|k|
4π

σtot (1)

Is there a more general concept behind this?
⇒ Answer: Yes!
short: The optical theorem follows directly from the unitarity of
the S-matrix.
⇒ How can we define the S-matrix in a physical meaningful way?
Let’s take a look at this...
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particle-states

Definition of one-and many-Particle-States

One-particle-state:

|φ〉(t) =

∫
d3k

(2π)3
· φ(k)√

2E (k)
|k〉(t) (2)

Multi-particle-state:

|φ1φ2...〉(t) ≡ |{φf }〉(t) =
∏
f

∫
d3kf

(2π)3
· φf (kf )√

2Ef
|{kf }〉(t) (3)

with |{kf }〉 ≡ |k1k2...〉
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particle-states

The starting point

Question:

What is the transition probability for the scattering of two particles
A and B into a many-particle-state |{φf (t)}〉?

transition propability

⇒ P(t2, t1) = | 〈{φf }(t2)︸ ︷︷ ︸
out

|φAφB(t1)〉︸ ︷︷ ︸
in

|2 (4)

⇒ We have to compute 〈{pf }(t2)|kAkB(t1)〉
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Definition of the S-matrix

Definition of the S-matrix

The S-matrix relates the incoming particles (coming from
t1 → −∞) and the outgoing particles (going to t2 → +∞).

Definition: The S-matrix:

〈{pf }|S |kAkB〉 ≡ lim
t→+∞

〈{pf }(t)|kAkB(−t)〉 (5)

Some properties of the S-matrix:

S have to be unitary (S†S = 1)

S is the identity if the particles do not interact between each
other
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Definition of the T-matrix

Definition of the T-matrix

Definition: The T-matrix:

S ≡ 1 + iT (6)

So, T is the interesting part of the interaction process (⇒ shows if
something interacts).

Some properties of the T-matrix:

S unitary ⇔ S†S = 1 ⇒ T †T = −i(T − T †)

T = 0 if the particles do not interact between each other

Define the invariant matrix-element M(kAkB → {pf }) by

〈{pf }|iT |kAkB〉 = iM(kAkB → {pf }) (2π)4δ(4)(kA + kB −
∑

f

pf ) (7)

M is proportional to the scattering amplitude f.
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Definition of the T-matrix

How does the Cross-Section σ depends on M?

Transition propability

At first we decide the probability that the initial state |φAφB〉
becomes scattered into the final momentum-state |{pf }〉 (that
means in a small region

∏
f d3pf ).

Therefore:

P(AB → {pf }, b) =
∏
f

d3pf

(2π)3
1

2Ef
|〈{pf }|φAφB〉(b)|2 (8)

with b as impact-parameter. Definition of the cross-section

σ =
Nsc

nBNA
=

∫
d2bP(b) (9)

(Nsc , # scattered particles, nB , number density, NA , #
incoming particles)
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Definition of the T-matrix

How does the Cross-Section σ depends on M?

Total Cross-Section

σtot =

(∏
f

∫
d3pf

(2π)3
1

2Ef
(2π)4δ(4)(P −

∑
f

pf )

)

×|M(pApB → {pf })|2

2EA2EB |vA − vB |

with P = pA + pB and vi = kz
i /Ei , i = A,B. Now, we can follow

the optical theorem quite easy...
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Derivation of the Optical Theorem

The Optical Theorem

The Optical Theorem:
We know S†S = 1 ⇒ T †T = −i(T − T †) an so we can calculate
the scattering amplitude for the process k1k2 → p1p2.

〈p1p2|T †T |k1k2〉 =
∑

n

(
n∏

f =1

∫
d3qf

(2π)3
1

2Ef

)
〈p1p2|T †|{qf }〉〈{qf }|T |k1k2〉

(10)

This gives us

−i(M(k1k2 → p1p2)−M∗(p1p2 → k1k2))

=
∑

n

(
n∏

f =1

∫
d3qf

(2π)3
1

2Ef

)
M(p1p2 → {qf })M∗(k1k2 → {qf })

·(2π)4δ(4)(k1 + k2 −
∑

f

qf ) (11)
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Derivation of the Optical Theorem

The Optical Theorem

The optical theorem relates the forward scattering amplitude
to the cross-section.

⇒ ki = pi , i = 1, 2 for forward scattering

2Im M(k1k2 → k1k2) =
∑

n

(
n∏

f =1

∫
d3qf

(2π)3
1

2Ef
(2π)4δ(4)(k1 + k2 −

∑
f

qf )

)
︸ ︷︷ ︸

≡
R

dΠn

× |M(k1k2 → {qf })|2

 

∑∫ Π=
f

fdIm2 f f

1k 1k

2k 2k 2k 2k

1k1k
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Derivation of the Optical Theorem

The Optical Theorem

Put in the relation for the total cross-section

⇒ 2Im M(k1k2 → k1k2) = 2EA2EB|vA − vB|σtot (12)

go into the CM-system
(pA + pB = 0 ⇒ ECM = EA + EB , PCM = pA = −pB)

Optical Theorem (Standardform)

Im M(k1k2 → k1k2) = 2ECMPCMσtot (13)
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The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams
We can derive M by the Feynman rules.
⇒ the virtual particles of the propagator yields an imaginary part
iε if they go on-shell.
Let’s check

−i(M(k1k2 → p1p2)−M∗(k1k2 → p1p2))

=
∑

f

∫
dΠfM(p1p2 → {qf })M∗(k1k2 → {qf })

·(2π)4δ(4)(k1 + k2 −
∑

f

qf )

for φ4-theory diagrams
threshold energy s0 is need for production of the lightest
multi-particle state (s = E 2

CM, Mandelstam-variable).
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The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams

properties of M

M(s) = [M(s∗)]∗ s < s0 (M(s) analytic!)
⇒ Re M(s + iε) = Re M(s− iε), s > s0

Im M(s + iε) = −Im M(s− iε), s > s0 ⇒ discontinuity

Attention!

φ4-theory

⇒ the simplest diagram in our case is a one loop diagram
(order ∝ λ2, s0 = 2m)

the generalization of the result for multi-loop diagrams has
been proven by Cutkosky

⇒ Cutting Rules
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The Optical Theorem for Feynman Diagrams
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The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams

Consider the one-loop diagram

 

qk
−

2
qk

+
2

1k 2k

21 kkk +=
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The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams

Loop-correction

iδM =
λ2

2

∫
d4q

(2π)4
1

(k/2− q)2 −m2 + iε

1

(k/2 + q)2 −m2 + iε
(14)

Some properties of δM:

For k0 < 2m the integral can be calculated and than we
increasing k0 by analytical continuation

!! We want to verify, that the integral has a discontinuity
across the real axis for k0 > 2m !!

⇒ go into the CM-system k = (k0, 0)
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The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams

⇒ we obtain four poles (E 2
q = |q|2 + m2)

q0 =
1

2
k0 ± (Eq − iε), q0 = −1

2
k0 ± (Eq − iε)

 

0q

qEk −− 0
2
1

qEk −0
2
1

qEk +− 0
2
1

qEk +0
2
1

⇒ only the pole at q0 = −1
2k0 + Eq − iε will contribute to the

discontinuity (close the integration contour in the lower half
plane!) ⇒ replace: 1

(k/2+q)2−m2+iε
→ −2πiδ((k/2 + q)2 −m2)

under the dq0-integral

Michael Ronniger The Optical Theorem and Partial Wave Unitarity



Overview Introduction The S-matrix - Definition The Optical Theorem Partial Wave Unitarity Summary

The Optical Theorem for Feynman Diagrams
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The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams

iδM = −2πi
λ2

2

∫
d3q

(2π)4
1

2Eq

1

(k0 − Eq)2 − E 2
q

(15)

= −2πi
λ2

2

4π

(2π)4

∫ ∞

m
dEqEq|q|

1

2Eq

1

k0(k0 − 2Eq)
(16)

properties

Eq = k0/2 is a pole of the integrand

if k0 < 2m the pole doesn’t lie in the integration contour
⇒ M is real

if k0 > 2m the pole does lie in the integration contour
⇒ k0 has a small positive or negative imaginary part
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The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams
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The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams

Integration contour:

 

orm m

⇒ Thus, the integral has a discontinuity between k2 + iε and
k2 − iε!

1

k0 − 2Eq ± iε
= P 1

k0 − 2Eq
∓ iπδ(k0 − 2Eq) (17)
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The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams

Integration contour:

 

orm m

⇒ Thus, the integral has a discontinuity between k2 + iε and
k2 − iε!
This is equivalent to replacing the original propagator by a delta-
distribution

1

(k/2− q)2 −m2 + iε
→ −2πiδ((k/2− q)2 −m2)
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The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams - Cutting
Rules

Cutting Rules:
Look again at

iδM =
λ2

2

∫
d4q

(2π)4
1

(k/2− q)2 −m2 + iε

1

(k/2 + q)2 −m2 + iε

and relabel the momenta at the two propagators with p1 and p2.
⇒ p1 = k/2− q, p2 = k/2 + q.

1. Replace:∫ d4q
(2π)4

=
∫∫ d4p1

(2π)4
d4p2

(2π)4
(2π)4δ(4)(p1 + p2 − k)

⇒ iδM =
λ2

2

∫∫
d4p1

(2π)4
d4p2

(2π)4
(2π)4δ(4)(p1 + p2 − k)

× 1

p2
1 −m2 + iε

1

p2
2 −m2 + iε
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The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams - Cutting
Rules

2. Replace:

1
p2

i −m2+iε
→ −2πiδ(p2

i −m2)

This gives us in order λ2 = |M(k)|2

2iIm δM(k) =
i

2

Z
dp3

1

(2π)3
1

2E1

dp3
2

(2π)3
1

2E2
|M(k)|2(2π)4δ(p1 + p2 − k) (18)

 

Im2i

23
2

3

13
1

3

2
1

)2(2
1

)2(2 E
pd

E
pdi

ππ∫=
2

( )( )kpp −+ 21
4δ

this verifies the optical theorem to order λ2 in φ4-theory
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The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams - Cutting
Rules

Cutting Rules

1 Cut through the diagram in all possible ways such that the cut
propagator can simultaneously be put on shell.

2 For each cut, replace 1/(p2 −m2 + iε) → −2πiδ(p2 −m2) in
each cut propagator, then perform the loop integrals.

3 Sum the contributions of all possible cuts.

Cutkosky proved this method in general.
Using these cutting rules, it is possible to check the optical
theorem for all orders in perturbation theory.
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The Optical Theorem for Feynman Diagrams
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The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams - Example

Bhabha-scattering:

 

Im2 ∫ Π= d
2

( )a

Im2 ∫ Π= d
2

( )b

Two contributions to the optical theorem for Bhabha-scattering.
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Partial Wave Unitarity

Partial Wave Unitarity:
For the M-Matrix we have found

−i(M(k1k2 → p1p2)−M∗(p1p2 → k1k2))

=
∑

n

(
n∏

f =1

∫
d3qf

(2π)3
1

2Ef

)
M(p1p2 → {qf })M∗(k1k2 → {qf })

·(2π)4δ(4)(k1 + k2 −
∑

f

qf ) (19)

Choose particle k2 at rest
Consider spinless particles ⇒ φ-independence
⇒ scattering angle θ ⇒M(k1k2 → p1p2) = Mij(s, θ) where
i = k1 + k2 and j = p1 + p2 denotes the initial- and final-state.
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Partial Wave Unitarity

scattering amplitude

⇒Mij(s, θ) ≡ 8πs1/2fij(s, θ) (20)

= 8πs1/2
∞∑
l=0

(2l + 1)Mij ,l(s)Pl(cos θ) (21)

with fij(s, θ) as the scattering amplitude.
If we put fii (s, 0) ≡ f (0)

Prove: Optical Theorem

Im f(0) =
|PCM|

4π
σtot (22)
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Two-Particle Partial Wave Unitarity

Partial Wave Unitarity

Two-Particle Partial Wave Unitarity:
If we consider only elastic scattering (i=j)

Im Ml =
∑

k

pk|Mk,l|2 (23)

and that all k-channels are closed at low energies (pk = p)

Im Ml = p|Ml|2 (24)

⇒Ml =
1

p
e iδl sin δl

where δl denotes the scattering-phase for the l-th partial wave
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Two-Particle Partial Wave Unitarity

Partial Wave Unitarity

The differential cross-section is in general given by

dσij

dΩ
=

1

16π2

p′

p

1

4s
|Mij(s, θ)|2 (25)

Using

Mij(s, θ) = 8πs1/2
∞∑
l=0

(2l + 1)Mij ,l(s)Pl(cos θ)
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Two-Particle Partial Wave Unitarity

Partial Wave Unitarity

we get

σij = 4π
p′

p

∑
l

(2l + 1)|Mij ,l |2 ≡
∑

l

σij ,l (26)

For pure elastic scattering at low energies

Partial total cross-section

σl =
4π

p2
(2l + 1) sin2 δl (27)
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Two-Particle Partial Wave Unitarity

Partial Wave Unitarity

And for the case: A and B carry spin

Partial total cross-section for spin 1/2 particles

σj = 4π
2j + 1

(2s1 + 1)(2s2 + 1)

∑
λ′

1λ
′
2λ1λ2

∣∣Mj(λ′1λ
′
2;λ1λ2; s)

∣∣2 (28)

we λi are the initial and λ′i the final helicities
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Short Outlook

Partial Wave Unitarity - Outlook

short outlook: W +W +-scattering ⇒ need higgs-boson!

W +W +-scattering

 

+
µW

+
µW

+
νW

+
νW

1p 2p

1k 2k

q

)(,, 00 hZγ
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Short Outlook

Partial Wave Unitarity - Outlook

It is possible to show

−iMγ+Z0+×(s) = −ig2

[(
s

M2
W

)
+ 2

]
∝ s (29)

but from the optical theorem follows for an large s

|M(s)| < 16π
q2

t0
(ln s)2 (result by [ItZu]) (30)

⇒ there must be a counter-term in eq. (29) to cancel the s
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Short Outlook

Partial Wave Unitarity - Outlook

put in the Higgs-Boson h0

−iM(s) = −i(Mγ+Z0+×(s) +Mh0(s)) = −ig2

[
4 +

1

2

(
Mh0

MW

)2
]

(31)

⇒ OK!
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Summary

1 We have proved, that the optical theorem
follows directly from the unitarity of the
S-matrix

2 Proving the optical theorem for Feynman
diagrams in φ4-theory we had found the cutting
rules

3 We have derived an equation for the partial total
cross-section for bosonic and fermionic particles
from the principles of the optical theorem
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