Overview	Introduction	The S-matrix - Definition	The Optical Theorem	Partial Wave Unitarity 0000000	
	The Opt	ical Theorem a	and Partial V	Vave Unitarity	/
		Michae	el Ronniger		_

Seminar on Theoretical Particle Physics University of Bonn

June 29th 2006

メロト (個) (注) (注) (注)

Overview	Introduction	The S-matrix - Definition	The Optical Theorem	Partial Wave Unitarity 0000000	Summary
1	Introductio	on			
2	The S-mat Particle- Definition Calcular	rix - Definition States on of the S-matrix on of the T-matrix tion of the Cross-Sec	c ction σ		
3	 The Optica Derivatio The Optication Cutting Example 	al Theorem on of the Optical cical Theorem for crules e	Theorem Feynman Diagra	ms	
4	Partial Wa • Two-Par • Short Or	ve Unitarity ticle Partial Wave utlook	e Unitarity		

5 Summary

イロン イロン イヨン イヨン

Overview	Introduction

The S-matrix - Definition 000000

The Optical Theorem

Partial Wave Unitarity

Summary

What is the **Optical Theorem**?

Motivation:

The Optical Theorem:

Im
$$f(\theta = 0) = \frac{|\mathbf{k}|}{4\pi} \sigma_{tot}$$
 (1)

Is there a more general concept behind this?

 \Rightarrow Answer: **Yes!**

short: The optical theorem follows directly from the unitarity of the S-matrix.

 \Rightarrow How can we define the S-matrix in a physical meaningful way? Let's take a look at this...

Overview	Introduction	The S-matrix - Definition	The Optical Theorem
		00000	

Partial Wave Unitarity

・ロト ・聞 ト ・ 通 ト ・ 通

Summary

particle-states

Definition of one-and many-Particle-States

One-particle-state:

$$\phi\rangle(t) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \cdot \frac{\phi(\mathbf{k})}{\sqrt{2E(k)}} |\mathbf{k}\rangle(t) \tag{2}$$

Multi-particle-state:

$$|\phi_1\phi_2...\rangle(t) \equiv |\{\phi_f\}\rangle(t) = \prod_f \int \frac{\mathrm{d}^3 k_f}{(2\pi)^3} \cdot \frac{\phi_f(\mathbf{k}_f)}{\sqrt{2E_f}} |\{\mathbf{k}_f\}\rangle(t) \quad (3)$$

with $|\{\mathbf{k}_f\}\rangle \equiv |\mathbf{k}_1\mathbf{k}_2...\rangle|$

Overview	Introduction	The S-matrix - Definition	The Optical Theorem
		00000	

Partial Wave Unitarity 0000000

イロン 不同 とくほう 不良 とうほう

Summary

particle-states

Definition of one-and many-Particle-States

One-particle-state:

$$\phi\rangle(t) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \cdot \frac{\phi(\mathbf{k})}{\sqrt{2E(k)}} |\mathbf{k}\rangle(t)$$
(2)

Multi-particle-state:

$$|\phi_1\phi_2...\rangle(t) \equiv |\{\phi_f\}\rangle(t) = \prod_f \int \frac{\mathrm{d}^3 k_f}{(2\pi)^3} \cdot \frac{\phi_f(\mathbf{k}_f)}{\sqrt{2E_f}} |\{\mathbf{k}_f\}\rangle(t) \quad (3)$$

with $|\{{f k}_f\}
angle\equiv |{f k}_1{f k}_2...
angle$

Overview	Introduction	The S-matrix - Definition	The Optical Theorem	Partial Wave Unitarity 0000000	Summary	
particle-stat	es					
The starting point						

Question:

What is the transition probability for the scattering of two particles A and B into a many-particle-state $|\{\phi_f(t)\}\rangle$?

transition propability

$$\Rightarrow \mathcal{P}(t_2, t_1) = |\underbrace{\langle \{\phi_f\}(t_2)}_{\text{out}}| \underbrace{\phi_A \phi_B(t_1)}_{\text{in}}|^2 \qquad (4)$$

 \Rightarrow We have to compute $\langle \{ {f p}_f \}(t_2) | {f k}_A {f k}_B(t_1)
angle$

Overview	Introduction	The S-matrix - Definition ○○●○○○	The Optical Theorem	Partial Wave Unitarity 0000000	Summary
Definition of	the S-matrix				
Definition of the S-matrix					

The S-matrix relates the **in**coming particles (coming from $t_1 \rightarrow -\infty$) and the **out**going particles (going to $t_2 \rightarrow +\infty$).

Definition: The S-matrix:

$$\langle \{\mathbf{p}_f\} | S | \mathbf{k}_A \mathbf{k}_B \rangle \equiv \lim_{t \to +\infty} \langle \{\mathbf{p}_f\}(t) | \mathbf{k}_A \mathbf{k}_B(-t) \rangle$$
(5)

Some properties of the S-matrix:

- S have to be unitary $(S^{\dagger}S = 1)$
- S is the identity if the particles do not interact between each other

Overview	Introduction	The S-matrix - Definition	The Optical Theorem	Partial Wave Unitarity 0000000	Summary
Definition o	f the T-matrix				
Defin	ition of t	the T-matrix			

Definition: The T-matrix:

$$S \equiv 1 + iT$$

(6)

So, T is the interesting part of the interaction process (\Rightarrow shows if something interacts).

Some properties of the T-matrix:

• S unitary
$$\Leftrightarrow S^{\dagger}S = 1 \Rightarrow T^{\dagger}T = -i(T - T^{\dagger})$$

• T = 0 if the particles do not interact between each other

Define the invariant matrix-element $\mathcal{M}(\mathbf{k}_{A}\mathbf{k}_{B} \rightarrow {\mathbf{p}_{f}})$ by

$$\langle \{\mathbf{p}_f\} | iT | \mathbf{k}_A \mathbf{k}_B \rangle = i \mathcal{M}(\mathbf{k}_A \mathbf{k}_B \to \{\mathbf{p}_f\}) \ (2\pi)^4 \delta^{(4)}(k_A + k_B - \sum p_f)$$
(7)

 ${\mathcal M}$ is proportional to the scattering amplitude f.

Overview	Introduction	The S-matrix - Definition	The Optical Theorem	Partial Wave Unitarity 0000000	
Definition of	the T-matrix				

How does the Cross-Section σ depends on \mathcal{M} ?

Transition propability

At first we decide the probability that the initial state $|\phi_A \phi_B\rangle$ becomes scattered into the final momentum-state $|\{\mathbf{p}_f\}\rangle$ (that means in a small region $\prod_f d^3 p_f$). Therefore:

$$\mathcal{P}(AB \to \{\mathbf{p}_f\}, b) = \prod_f \frac{\mathrm{d}^3 p_f}{(2\pi)^3} \frac{1}{2E_f} |\langle \{p_f\} | \phi_A \phi_B \rangle(b)|^2 \quad (8)$$

with b as impact-parameter. Definition of the cross-section

$$\sigma = \frac{N_{\rm sc}}{n_B N_A} = \int d^2 b \mathcal{P}(b) \tag{9}$$

 $(N_{sc} \triangleq \# \text{ scattered particles}, n_B \triangleq \text{ number density}, N_A \triangleq \# \text{ incoming particles})$

Overview Introduction

The S-matrix - Definition

The Optical Theorem

Partial Wave Unitarity

イロン 不同 とくほう くほう 二日

Summary

Definition of the T-matrix

How does the Cross-Section σ depends on \mathcal{M} ?

Total Cross-Section

$$\sigma_{\text{tot}} = \left(\prod_{f} \int \frac{\mathrm{d}^{3} p_{f}}{(2\pi)^{3}} \frac{1}{2E_{f}} (2\pi)^{4} \delta^{(4)} (P - \sum_{f} p_{f}) \right) \\ \times \frac{|\mathcal{M}(\mathbf{p}_{A} \mathbf{p}_{B} \rightarrow \{\mathbf{p}_{f}\})|^{2}}{2E_{A} 2E_{B} |v_{A} - v_{B}|}$$

with $P = p_A + p_B$ and $v_i = k_i^z / E_i$, i = A, B. Now, we can follow the optical theorem quite easy...

The Optical Theorem:

We know $S^{\dagger}S = 1 \implies T^{\dagger}T = -i(T - T^{\dagger})$ and so we can calculate the scattering amplitude for the process $k_1k_2 \rightarrow p_1p_2$.

$$\langle p_1 p_2 | T^{\dagger} T | k_1 k_2 \rangle = \sum_n \left(\prod_{f=1}^n \int \frac{\mathrm{d}^3 q_f}{(2\pi)^3} \frac{1}{2E_f} \right) \langle p_1 p_2 | T^{\dagger} | \{q_f\} \rangle \langle \{q_f\} | T | k_1 k_2 \rangle$$

$$\tag{10}$$

This gives us

$$-i(\mathcal{M}(k_{1}k_{2} \to p_{1}p_{2}) - \mathcal{M}^{*}(p_{1}p_{2} \to k_{1}k_{2}))$$

$$= \sum_{n} \left(\prod_{f=1}^{n} \int \frac{\mathrm{d}^{3}q_{f}}{(2\pi)^{3}} \frac{1}{2E_{f}}\right) \mathcal{M}(p_{1}p_{2} \to \{q_{f}\}) \mathcal{M}^{*}(k_{1}k_{2} \to \{q_{f}\})$$

$$\cdot (2\pi)^{4} \delta^{(4)}(k_{1} + k_{2} - \sum_{f} q_{f})$$
(11)

The optical theorem relates the forward scattering amplitude to the cross-section.

イロン 不得 とくほ とくほう

Put in the relation for the total cross-section

$$\Rightarrow 2\mathrm{Im} \ \mathcal{M}(\mathbf{k}_{1}\mathbf{k}_{2} \rightarrow \mathbf{k}_{1}\mathbf{k}_{2}) = 2\mathrm{E}_{\mathrm{A}}2\mathrm{E}_{\mathrm{B}}|\mathbf{v}_{\mathrm{A}} - \mathbf{v}_{\mathrm{B}}|\sigma_{\mathrm{tot}}$$
(12)

go into the CM-system $(\mathbf{p}_A + \mathbf{p}_B = 0 \Rightarrow E_{CM} = E_A + E_B, \ \mathbf{P}_{CM} = \mathbf{p}_A = -\mathbf{p}_B)$

Optical Theorem (Standardform)

Im
$$\mathcal{M}(k_1k_2 \rightarrow k_1k_2) = 2E_{CM}P_{CM}\sigma_{tot}$$
 (13)

イロン 不同 とくほう くほう 二日

Introduction The S-matrix - Definition

The Optical Theorem

Partial Wave Unitarity

Summary

The Optical Theorem for Feynman Diagrams

Overview

The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams We can derive \mathcal{M} by the Feynman rules.

 \Rightarrow the virtual particles of the propagator yields an imaginary part *i* ϵ if they go *on-shell*.

Let's check

$$-i(\mathcal{M}(k_1k_2 \rightarrow p_1p_2) - \mathcal{M}^*(k_1k_2 \rightarrow p_1p_2))$$
$$= \sum_f \int d\Pi_f \mathcal{M}(p_1p_2 \rightarrow \{q_f\}) \mathcal{M}^*(k_1k_2 \rightarrow \{q_f\})$$
$$\cdot (2\pi)^4 \delta^{(4)}(k_1 + k_2 - \sum_f q_f)$$

for ϕ^4 -theory diagrams threshold energy s_0 is need for production of the lightest multi-particle state ($s = E_{CM}^2$, Mandelstam-variable). Overview Introduction Th

The S-matrix - Definition

The Optical Theorem

Partial Wave Unitarity

Summary

The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams

properties of ${\cal M}$

$$\begin{array}{lll} \mathcal{M}(s) &=& [\mathcal{M}(s^*)]^* \ s < s_0 \ (\mathcal{M}(s) \ \mathrm{analytic!}) \\ \Rightarrow \mathrm{Re} \ \mathcal{M}(s + \mathrm{i}\epsilon) &=& \mathrm{Re} \ \mathcal{M}(s - \mathrm{i}\epsilon), \ s > s_0 \\ \mathrm{Im} \ \mathcal{M}(s + \mathrm{i}\epsilon) &=& -\mathrm{Im} \ \mathcal{M}(s - \mathrm{i}\epsilon), \ s > s_0 \Rightarrow \ \mathrm{discontinuity} \end{array}$$

Attention!

- ϕ^4 -theory
- \Rightarrow the simplest diagram in our case is a one loop diagram (order $\propto \lambda^2$, $s_0 = 2m$)
- the generalization of the result for multi-loop diagrams has been proven by *Cutkosky*
- \Rightarrow Cutting Rules

Overview Introduction The S

The S-matrix - Definition

The Optical Theorem

Partial Wave Unitarity

Summary

The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams

properties of ${\cal M}$

$$\begin{split} \mathcal{M}(s) &= [\mathcal{M}(s^*)]^* \ s < s_0 \ (\mathcal{M}(s) \ \text{analytic!}) \\ \Rightarrow \operatorname{Re} \ \mathcal{M}(s + i\epsilon) &= \operatorname{Re} \ \mathcal{M}(s - i\epsilon), \ s > s_0 \\ \operatorname{Im} \ \mathcal{M}(s + i\epsilon) &= -\operatorname{Im} \ \mathcal{M}(s - i\epsilon), \ s > s_0 \Rightarrow \ \text{discontinuity} \end{split}$$

Attention!

- ϕ^4 -theory
- \Rightarrow the simplest diagram in our case is a one loop diagram (order $\propto \lambda^2, s_0 = 2m$)
- the generalization of the result for multi-loop diagrams has been proven by *Cutkosky*
- \Rightarrow Cutting Rules

The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams

Consider the one-loop diagram

Overview Introduction

The S-matrix - Definition

The Optical Theorem

Partial Wave Unitarity

Summary

The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams

Loop-correction

$$i\delta \mathcal{M} = \frac{\lambda^2}{2} \int \frac{\mathrm{d}^4 q}{(2\pi)^4} \frac{1}{(k/2 - q)^2 - m^2 + i\epsilon} \frac{1}{(k/2 + q)^2 - m^2 + i\epsilon}$$
(14)

Some properties of $\delta \mathcal{M}$:

- For k₀ < 2m the integral can be calculated and than we increasing k₀ by analytical continuation
- !! We want to verify, that the integral has a discontinuity across the real axis for $k_0 > 2m$!!
- \Rightarrow go into the CM-system $k = (k_0, 0)$

Introduction The S-matrix - Definition

The Optical Theorem

Partial Wave Unitarity

Summary

The Optical Theorem for Feynman Diagrams

Overview

The Optical Theorem for Feynman Diagrams

 \Rightarrow we obtain four poles ($E_q^2 = |{f q}|^2 + m^2$)

 \Rightarrow only the pole at $q_0 = -\frac{1}{2}k^0 + E_q - i\epsilon$ will contribute to the discontinuity (close the integration contour in the lower half plane!) \Rightarrow replace: $\frac{1}{(k/2+q)^2 - m^2 + i\epsilon} \rightarrow -2\pi i\delta((k/2+q)^2 - m^2)$ under the d q_0 -integral

イロン 不良 とくほう イロン

Introduction The S-matrix - Definition

The Optical Theorem

Partial Wave Unitarity 0000000 Summary

The Optical Theorem for Feynman Diagrams

Overview

The Optical Theorem for Feynman Diagrams

 \Rightarrow we obtain four poles ($E_q^2 = |\mathbf{q}|^2 + m^2$)

⇒ only the pole at $q_0 = -\frac{1}{2}k^0 + E_q - i\epsilon$ will contribute to the discontinuity (close the integration contour in the lower half plane!) ⇒ replace: $\frac{1}{(k/2+q)^2 - m^2 + i\epsilon} \rightarrow -2\pi i\delta((k/2+q)^2 - m^2)$ under the d q_0 -integral

The S-matrix - Definition Overview Introduction

The Optical Theorem 000000000000

Partial Wave Unitarity

The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams

$$i\delta\mathcal{M} = -2\pi i \frac{\lambda^2}{2} \int \frac{\mathrm{d}^3 q}{(2\pi)^4} \frac{1}{2E_{\mathbf{q}}} \frac{1}{(k^0 - E_{\mathbf{q}})^2 - E_{\mathbf{q}}^2}$$
(15)
$$= -2\pi i \frac{\lambda^2}{2} \frac{4\pi}{(2\pi)^4} \int_m^\infty \mathrm{d}E_{\mathbf{q}} E_{\mathbf{q}} |\mathbf{q}| \frac{1}{2E_q} \frac{1}{k^0(k^0 - 2E_{\mathbf{q}})}$$
(16)

- $E_{\rm q} = k^0/2$ is a pole of the integrand
- if $k^0 < 2m$ the pole doesn't lie in the integration contour
- if $k^0 > 2m$ the pole does lie in the integration contour

Overview Introduction The S-matrix - Definition

The Optical Theorem

Partial Wave Unitarity

Summary

The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams

$$i\delta\mathcal{M} = -2\pi i \frac{\lambda^2}{2} \int \frac{\mathrm{d}^3 q}{(2\pi)^4} \frac{1}{2E_{\mathbf{q}}} \frac{1}{(k^0 - E_{\mathbf{q}})^2 - E_{\mathbf{q}}^2}$$
(15)
$$= -2\pi i \frac{\lambda^2}{2} \frac{4\pi}{(2\pi)^4} \int_m^\infty \mathrm{d}E_{\mathbf{q}} E_{\mathbf{q}} |\mathbf{q}| \frac{1}{2E_q} \frac{1}{k^0(k^0 - 2E_{\mathbf{q}})}$$
(16)

properties

- $E_{\mathbf{q}} = k^0/2$ is a pole of the integrand
- if $k^0 < 2m$ the pole doesn't lie in the integration contour $\Rightarrow \mathcal{M}$ is real
- if k⁰ > 2m the pole does lie in the integration contour
 ⇒ k⁰ has a small positive or negative imaginary part

The Optical Theorem for Feynman Diagrams

 \Rightarrow Thus, the integral has a discontinuity between $k^2 + i\epsilon$ and $k^2 - i\epsilon!$

$$\frac{1}{k^0 - 2E_{\mathbf{q}} \pm i\epsilon} = \mathcal{P}\frac{1}{k^0 - 2E_{\mathbf{q}}} \mp i\pi\delta(k^0 - 2E_{\mathbf{q}})$$
(17)

The Optical Theorem for Feynman Diagrams

 \Rightarrow Thus, the integral has a discontinuity between $k^2 + i\epsilon$ and $k^2 - i\epsilon!$

This is equivalent to replacing the original propagator by a deltadistribution

$$rac{1}{(k/2-q)^2-m^2+i\epsilon}
ightarrow -2\pi i\delta((k/2-q)^2-m^2)$$

Introduction The S-matrix - Definition

The Optical Theorem

Partial Wave Unitarity

Summary

The Optical Theorem for Feynman Diagrams

Overview

The Optical Theorem for Feynman Diagrams - Cutting Rules

Cutting Rules:

Look again at

$$i\delta \mathcal{M} = \frac{\lambda^2}{2} \int \frac{\mathrm{d}^4 q}{(2\pi)^4} \frac{1}{(k/2 - q)^2 - m^2 + i\epsilon} \frac{1}{(k/2 + q)^2 - m^2 + i\epsilon}$$

and relabel the momenta at the two propagators with p_1 and p_2 . $\Rightarrow p_1 = k/2 - q, \ p_2 = k/2 + q.$

1. Replace:

$$\int \frac{\mathrm{d}^4 q}{(2\pi)^4} = \iint \frac{\mathrm{d}^4 p_1}{(2\pi)^4} \frac{\mathrm{d}^4 p_2}{(2\pi)^4} (2\pi)^4 \delta^{(4)}(p_1 + p_2 - k)$$

$$\Rightarrow i\delta\mathcal{M} = \frac{\lambda^2}{2} \iint \frac{\mathrm{d}^4 p_1}{(2\pi)^4} \frac{\mathrm{d}^4 p_2}{(2\pi)^4} (2\pi)^4 \delta^{(4)}(p_1 + p_2 - k) \\ \times \frac{1}{p_1^2 - m^2 + i\epsilon} \frac{1}{p_2^2 - m^2 + i\epsilon}$$

Partial Wave Unitarity

Summary

The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams - Cutting Rules

2. Replace:

$$rac{1}{p_i^2-m^2+i\epsilon}
ightarrow -2\pi i\delta(p_i^2-m^2)$$

This gives us in order
$$\lambda^2 = |\mathcal{M}(k)|^2$$

 $2i \mathrm{Im} \ \delta \mathcal{M}(k) = \frac{i}{2} \int \frac{\mathrm{d} p_1^3}{(2\pi)^3} \frac{1}{2E_1} \frac{\mathrm{d} p_2^3}{(2\pi)^3} \frac{1}{2E_2} |\mathcal{M}(k)|^2 (2\pi)^4 \delta(p_1 + p_2 - k)$ (18)

$$2i \operatorname{Im}(\times)$$

$$= \frac{i}{2} \int \frac{d^3 p_1}{(2\pi)^3} \frac{1}{2E_1} \frac{d^3 p_2}{(2\pi)^3} \frac{1}{2E_2} \left| \sum \right|^2 \delta^{(4)} (p_1 + p_2 - k)$$

this verifies the optical theorem to order λ^2 in $\phi^4\text{-theory}$

Introduction

Overview

The S-matrix - Definition

The Optical Theorem

Partial Wave Unitarity

イロン 不得入 不良人 不良人 一旦

Summary

The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams - Cutting Rules

Cutting Rules

- Cut through the diagram in *all possible* ways such that the cut propagator can simultaneously be put *on shell*.
- So For each cut, replace $1/(p^2 m^2 + i\epsilon) \rightarrow -2\pi i\delta(p^2 m^2)$ in each cut propagator, then perform the loop integrals.
- Sum the contributions of all possible cuts.

Cutkosky proved this method in general.

Using these cutting rules, it is possible to check the optical theorem for all orders in perturbation theory.

Overview Introduction

The S-matrix - Definition

The Optical Theorem

Partial Wave Unitarity

Summary

The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams - Cutting Rules

Cutting Rules

- Cut through the diagram in *all possible* ways such that the cut propagator can simultaneously be put *on shell*.
- So For each cut, replace $1/(p^2 m^2 + i\epsilon) \rightarrow -2\pi i\delta(p^2 m^2)$ in each cut propagator, then perform the loop integrals.
- Sum the contributions of all possible cuts.

Cutkosky proved this method in general. Using these cutting rules, it is possible to check the optical theorem for all orders in perturbation theory.

The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams - Example

Two contributions to the optical theorem for Bhabha-scattering.

Overview	Introduction	The S-matrix - Definition	The Optical Theorem	Partial Wave Unitarity	
Partia	al Wave	Unitarity			

Partial Wave Unitarity:

For the \mathcal{M} -Matrix we have found

$$-i(\mathcal{M}(k_{1}k_{2} \to p_{1}p_{2}) - \mathcal{M}^{*}(p_{1}p_{2} \to k_{1}k_{2}))$$

$$= \sum_{n} \left(\prod_{f=1}^{n} \int \frac{\mathrm{d}^{3}q_{f}}{(2\pi)^{3}} \frac{1}{2E_{f}}\right) \mathcal{M}(p_{1}p_{2} \to \{q_{f}\}) \mathcal{M}^{*}(k_{1}k_{2} \to \{q_{f}\})$$

$$\cdot (2\pi)^{4} \delta^{(4)}(k_{1} + k_{2} - \sum_{f} q_{f})$$
(19)

Choose particle k_2 at rest Consider spinless particles $\Rightarrow \phi$ -independence \Rightarrow scattering angle $\theta \Rightarrow \mathcal{M}(k_1k_2 \rightarrow p_1p_2) = \mathcal{M}_{ij}(s, \theta)$ where $i = k_1 + k_2$ and $j = p_1 + p_2$ denotes the *initial*- and *final-state*.

Overview	Introduction	The S-matrix - Definition	The Optical Theorem	Partial Wave Unitarity

Partial Wave Unitarity

scattering amplitude

$$\Rightarrow \mathcal{M}_{ij}(s,\theta) \equiv 8\pi s^{1/2} f_{ij}(s,\theta)$$
(20)
$$= 8\pi s^{1/2} \sum_{l=0}^{\infty} (2l+1) \mathcal{M}_{ij,l}(s) \mathcal{P}_l(\cos\theta)$$
(21)

with $f_{ij}(s, \theta)$ as the scattering amplitude. If we put $f_{ii}(s, 0) \equiv f(0)$

Prove: Optical Theorem

Im f(0) =
$$\frac{|\mathbf{P}_{\rm CM}|}{4\pi}\sigma_{\rm tot}$$

ヘロン 人間と 人間と 人間と

(22)

Two-Particle Partial Wave Unitarity: If we consider only elastic scattering (i=j)

$$\operatorname{Im} \mathcal{M}_{l} = \sum_{k} p_{k} |\mathcal{M}_{k,l}|^{2}$$
(23)

and that all k-channels are closed at low energies $(p_k = p)$

$$\operatorname{Im} \mathcal{M}_{l} = p|\mathcal{M}_{l}|^{2}$$
(24)

$$\Rightarrow \mathcal{M}_I = rac{1}{p} e^{i\delta_I} \sin \delta_I$$

where δ_l denotes the scattering-phase for the l-th partial wave

The differential cross-section is in general given by

$$\frac{\mathrm{d}\sigma_{\mathrm{ij}}}{\mathrm{d}\Omega} = \frac{1}{16\pi^2} \frac{p'}{p} \frac{1}{4s} \left| \mathcal{M}_{ij}(s,\theta) \right|^2 \tag{25}$$

Using

$$\mathcal{M}_{ij}(s,\theta) = 8\pi s^{1/2} \sum_{l=0}^{\infty} (2l+1) \mathcal{M}_{ij,l}(s) \mathcal{P}_l(\cos\theta)$$

Overview	Introduction	The S-matrix - Definition 000000	The Optical Theorem	Partial Wave Unitarity 00●0000	Summary		
Two-Particle Partial Wave Unitarity							
Partial Wave Unitarity							

we get

$$\sigma_{ij} = 4\pi \frac{p'}{p} \sum_{l} (2l+1) |\mathcal{M}_{ij,l}|^2 \equiv \sum_{l} \sigma_{ij,l}$$
(26)

For pure elastic scattering at low energies

Partial total cross-section

$$\sigma_{I} = \frac{4\pi}{p^{2}} (2I+1) \sin^{2} \delta_{I}$$
(27)

Overview	Introduction	The S-matrix - Definition 000000	The Optical Theorem	Partial Wave Unitarity 000●000	Summary				
Two-Particle	Two-Particle Partial Wave Unitarity								
Partial Wave Unitarity									

And for the case: A and B carry spin

Partial total cross-section for spin 1/2 particles

$$\sigma_{j} = 4\pi \frac{2j+1}{(2s_{1}+1)(2s_{2}+1)} \sum_{\lambda_{1}'\lambda_{2}'\lambda_{1}\lambda_{2}} \left| \mathcal{M}^{j}(\lambda_{1}'\lambda_{2}';\lambda_{1}\lambda_{2};s) \right|^{2}$$
(28)

we λ_i are the initial and λ'_i the final helicities

short outlook: W^+W^+ -scattering \Rightarrow need higgs-boson!

Overview	Introduction	The S-matrix - Definition 000000	The Optical Theorem	Partial Wave Unitarity ○○○○○●○	
Short Outlo	ok				
Partia	al Wave	Unitarity - Out	tlook		

It is possible to show

$$-i\mathcal{M}_{\gamma+Z^0+\times}(s) = -ig^2\left[\left(\frac{s}{M_W^2}\right) + 2\right] \propto s$$
 (29)

but from the optical theorem follows for an large s

$$|\mathcal{M}(s)| < 16\pi \frac{q^2}{t_0} (\ln s)^2 \text{ (result by [ItZu])}$$
 (30)

 \Rightarrow there must be a counter-term in eq. (29) to cancel the s

Overview	Introduction	The S-matrix - Definition	The Optical Theorem	Partial Wave Unitarity ○○○○○●	
Short Outlo	ok				
Partia	al Wave	Unitarity - Out	tlook		

put in the Higgs-Boson h_0

$$-i\mathcal{M}(s) = -i(\mathcal{M}_{\gamma+Z^0+\times}(s) + \mathcal{M}_{h_0}(s)) = -ig^2 \left[4 + \frac{1}{2} \left(\frac{M_{h_0}}{M_W}\right)^2\right]$$
(31)

 \Rightarrow OK!

Overview	Introduction	The S-matrix - Definition 000000	The Optical Theorem	Partial Wave Unitarity 0000000	Summary
Sumn	nary				

- We have proved, that the optical theorem follows directly from the *unitarity* of the *S-matrix*
- Proving the optical theorem for *Feynman* diagrams in ϕ^4 -theory we had found the cutting rules
- We have derived an equation for the partial total cross-section for bosonic and fermionic particles from the principles of the optical theorem

イロン 不得 とくほ とくほう

Overview	Introduction	The S-matrix - Definition 000000	The Optical Theorem	Partial Wave Unitarity 0000000	Summary
Sumn	nary				

- We have proved, that the optical theorem follows directly from the *unitarity* of the *S-matrix*
- Proving the optical theorem for *Feynman* diagrams in ϕ^4 -theory we had found the cutting rules
- We have derived an equation for the partial total cross-section for bosonic and fermionic particles from the principles of the optical theorem

Overview	Introduction	The S-matrix - Definition 000000	The Optical Theorem	Partial Wave Unitarity 0000000	Summary
Sumn	nary				

- We have proved, that the optical theorem follows directly from the *unitarity* of the *S-matrix*
- Proving the optical theorem for *Feynman* diagrams in ϕ^4 -theory we had found the cutting rules
- We have derived an equation for the partial total cross-section for bosonic and fermionic particles from the principles of the optical theorem

	000000	00000000000000	0000000	
[PeSc] M. An Introd (Westview	E. Peskin, D. V uction to Quantu v Press 1995)	. Schroeder um Field Theory		
[FaRi] Fay A modern (World So	yazuddin, Riazu Introduction to cientific 2000, Se	ddin Particle Physics cond Edition)		
[ltZu] ltzy Quantum (McGraw-	/kson, Zuber Field Theory Hill, New York 1	.980)		

The Optical Theorem

Partial Wave Unitarity

Summary