
Path Integral and Partition Function Landau-Ginzburg Theory Application to Superconductivity Outlook: Renormalization Group Summary

QFT at finite Temperature

Benjamin Eltzner

Universität Bonn

Seminar on Theoretical Elementary Particle Physics and QFT, 13.07.06

Universität Bonn

QFT at finite Temperature



Path Integral and Partition Function Landau-Ginzburg Theory Application to Superconductivity Outlook: Renormalization Group Summary

Content

1 Path Integral and Partition Function
Classical Partition Function
The Quantum Mechanical Partition Function
High Temperature Limit

2 Landau-Ginzburg Theory

3 Application to Superconductivity

4 Outlook: Renormalization Group

Universität Bonn

QFT at finite Temperature



Path Integral and Partition Function Landau-Ginzburg Theory Application to Superconductivity Outlook: Renormalization Group Summary

Content

1 Path Integral and Partition Function
Classical Partition Function
The Quantum Mechanical Partition Function
High Temperature Limit

2 Landau-Ginzburg Theory

3 Application to Superconductivity

4 Outlook: Renormalization Group

Universität Bonn

QFT at finite Temperature



Path Integral and Partition Function Landau-Ginzburg Theory Application to Superconductivity Outlook: Renormalization Group Summary

Content

1 Path Integral and Partition Function
Classical Partition Function
The Quantum Mechanical Partition Function
High Temperature Limit

2 Landau-Ginzburg Theory

3 Application to Superconductivity

4 Outlook: Renormalization Group

Universität Bonn

QFT at finite Temperature



Path Integral and Partition Function Landau-Ginzburg Theory Application to Superconductivity Outlook: Renormalization Group Summary

Content

1 Path Integral and Partition Function
Classical Partition Function
The Quantum Mechanical Partition Function
High Temperature Limit

2 Landau-Ginzburg Theory

3 Application to Superconductivity

4 Outlook: Renormalization Group

Universität Bonn

QFT at finite Temperature



Path Integral and Partition Function Landau-Ginzburg Theory Application to Superconductivity Outlook: Renormalization Group Summary

Structure

1 Path Integral and Partition Function
Classical Partition Function
The Quantum Mechanical Partition Function
High Temperature Limit

2 Landau-Ginzburg Theory

3 Application to Superconductivity

4 Outlook: Renormalization Group

Universität Bonn

QFT at finite Temperature



Path Integral and Partition Function Landau-Ginzburg Theory Application to Superconductivity Outlook: Renormalization Group Summary

Classical Partition Function

The Classical Partition Function
The Classical Partition Function is

Z =
∑

i

e−βEi =
∏

n

∫
dpn dqn e−βE(p,q)

Where E(p,q) =
∑

n(1/2m)p2
n + V ({qn}).

Integrate out the pn:

Z =
∏

n

∫
dqn e−βV ({qn})

Now in the field theoretical limit:

discrete → continous
parameter n ∈ Z → parameter x ∈ Rd

particles qn → field ϕ(x)
sum

∑
n → integral

∫
ddx

integrals
∏

n

∫
dqn → path integral

∫
Dϕ
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Classical Partition Function

Path Integral

We get V ({qn}) → 1
2 (∂ϕ)2 + V (ϕ).

This leads to the Euclidean path integral in d Dimensions

Z =

∫
Dϕ e−

1
~

R
dd x( 1

2 (∂ϕ)2+V (ϕ))

where β is replaced by 1
~ .

Result
Euclidean QFT in d-dimensional spacetime is equivalent to classical
statistical mechanics in d-dimensional space.
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The Quantum Mechanical Partition Function

Quantum Statistical Mechanics

The quantum partition function is

Z = tr
(
e−βH) =

∑
n

〈n|e−βH |n〉

This looks like

〈F |e−iHt |I〉 =

∫
Dq e i

R t
0 dτL(q) where q(0) = I, q(t) = F

where we have β instead of it and q(0) = q(β) because of I = F .

Z =

∮
Dϕ e−

R β
0 dτ

R
dDxL(ϕ)

with D the number of space dimensions. The
∮

is supposed to
indicate that ϕ(~x ,0) = ϕ(~x , β).
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The Quantum Mechanical Partition Function

The T = 0 Limit

For T → 0, that is β →∞, we get

Z =

∫
Dϕ e−

R
dD+1xL(ϕ)

the normal euclidean path integral in (D+1) dimensions.

Result
Euclidean QFT in (D+1)-dimensional spacetime is equivalent to
quantum statistical mechanics in D-dimensional space in the low
temperature limit.
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High Temperature Limit

Feynman Rules

Assume Fourier transformation of time e iωτ

ϕ(~x ,0) = ϕ(~x , β) ⇒ ωn = 2πn
β where n ∈ Z

Propagator: 1
ω2+~k2

→ 1
(2πT )2n2+~k2

T →∞⇒ only contribution for n = 0
For T →∞ only D dimensions remain

Result
Euclidean QFT in D-dimensional spacetime is equivalent to high
temperature quantum statistical mechanics in D-dimensional space.
Thus we get the classical limit for high temperatures.

Universität Bonn
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Phase Transitions

Definitions and Question
An n-th order phase transition is a thermodynamic state in which
an n-th derivative of the potential F has a discontinuity while
lower order derivatives are continous.

Consider a first order phase transition with a discontinuity in
Ψ =

(
∂F
∂E

)
T which only occurs below a certain temperature Tc .

Call Ψ the order parameter.
Call E the exciter.
Call the state (T = Tc , E = 0) a critical point.

What is the T -dependence of the order parameter below Tc?

Universität Bonn
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Critical Exponents

τ =
T − Tc

Tc

Definition
Describe the T -dependence by power laws

Ψ(T ) =
(
∂F
∂E

)
T ∝ |τ |

β

χ(T ) =
(
∂2F
∂E2

)
T
∝ |τ |−γ

cE(T ) =
(
∂2F
∂T 2

)
E
∝ |τ |−α

The powers α, β and γ are then called critical exponents. They give
us a full characterization of the relevant thermodynamics at the
critical point. Now how can we compute them?

Universität Bonn
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Taylor Expansion
Notation for densities:

Ψ =

∫
d3x ψ F =

∫
d3x f

Ansatz
Look at a small region around the critical point. Ask for ψ → −ψ
symmetry. Taylor expansion in ψ:

f = f0 + a|ψ|2 + b|ψ|4 + ...

b > 0 is requested for stability of the system. Comparison to
Higgs-Potential:

V = µ2|φ|2 + λ|φ|4

φ has two minima for µ2 < 0 at ±
√

−µ2

2λ

Universität Bonn
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The First Critical Exponent

We want one minimum for T > Tc but two minima for T < Tc . This
can only be achieved by a being T -dependent

a =
∞∑

n=−∞
anτ

n

minimal power nmin dominates, therefore it must be odd
∃n < 0 : an 6= 0 ⇒ first order phase transition, not wanted
we require nmin ∈ N odd. For simplicity: nmin = 1

Result

|ψ| =
√
−a
2b

=

√
a1

2b
|τ |0,5 ⇒ β = 0,5

Universität Bonn
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The Other Critical Exponents

Plugging in the result for ψ(τ) we get

f ∝ τ2 ⇒ cE(T ) ∝
(
∂2f
∂T 2

)
E
∝ |τ |0

this means α = 0.

To calculate γ we must do a Legendre
transformation to fix E and not ψ externally.

g = a|ψ|2 + b|ψ|4 − ψE

Then we differentiate w.r.t E on both sides and use ψ = ∂g
∂E and

χ = ∂ψ
∂E . At last setting E = 0 we get

χ =
1

a + 2b|ψ|2
∝ |τ |−1 ⇒ γ = 1

Universität Bonn
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Second Order Phase Transition

We have at last calculated the critical exponents

α = 0
β = 0,5
γ = 1

The last critical exponent leads to a discontinuity of χ(T ) =
(
∂2g
∂E2

)
T

so we have by definition a phase transition of second order in the
critical point.

By considering a space dependent order parameter we can compute
a correlation function 〈ψ(x)ψ(0)〉 which goes like e−x/ξ where
ξ = |τ |−ν is the correlation length with critical exponent ν = 0,5.

Universität Bonn
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Introduction

For the superconductor
The order parameter is ψ.
The external magnetic field is H.
The conjugate of H is B, the magnetic field inside the
superconductor.
The order parameter ψ(x) can vary in space.

We get an energy term for B which is (Fij)
2. The space dependence

of ψ gives a term |~∇ψ|2. Introducing a gauge field for a charged ψ we

get
∣∣∣(~p − e∗~A)ψ

∣∣∣2.

Universität Bonn
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Potential for the Superconductor

The total energy is

f − f0 = ((∂j − ie∗Aj)ψ)+((∂j − ie∗Aj)ψ) + a|ψ|2 + b|ψ|4 +
1
4

FijFij + ...

In comparison, the Higgs-Lagrangian is

LHiggs = ((∂µ − ieAµ)φ)+((∂µ − ieAµ)φ)− µ2|φ|2 − λ|φ|4 +
1
4

FµνFµν

Only difference: Euclidean ↔ Minkowski Space
Thus we get as energy in the superconducting case

f − f0 =

(
e∗
√
−a
2b

)2

~A2 +
1
4

(Fij)
2 + ...

Universität Bonn
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Meissner Effect

For ~B constant we have ~A2(~x) =
~B2~x2 sin2 θ

4

Thus the energy density rises quadratically with the distance.

The ~B-field is expelled. This is called Meissner Effect.

Result

By spontaneous symmetry breaking we get a term ∝ ~A2 in the
Lagrangian, which resembles very much the gauge boson mass
terms we know from the Higgs mechanism in particle physics. In fact
Landau-Ginzburg theory was developed long before the Higgs
mechanism. It can be translated to particle physics due to the
equivalence between statistical mechanics and QFT which we saw
before.
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Critical Point and φ4-Theory

Consider the euclidean Lagrangian for a φ4-Theory in d dimensions

L =
1
2

(∂µφ)2 +
1
2
ρmM2φ2 +

1
4
λMd−4φ4

where M is the renormalization scale. ρm and λ are then
dimensionless.

Similar to Landau-Ginzburg energy for a ferromagnet
⇒ we can look at the renormalization group for a φ4-Theory and
use the results to describe our critical point.
For m = 0 we have a fixed point of the renormalization group:

λ =

{
0 for d ≥ 4
λ∗ = 16π2

3 (4− d) for d < 4

Universität Bonn
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Similar to Landau-Ginzburg energy for a ferromagnet
⇒ we can look at the renormalization group for a φ4-Theory and
use the results to describe our critical point.
For m = 0 we have a fixed point of the renormalization group:

λ =

{
0 for d ≥ 4
λ∗ = 16π2

3 (4− d) for d < 4
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For d < 4: fixed point = critical point!
Consider only m ≈ 0, that means T ≈ Tc because the mass
evolves away from the fixed point

Solve the Callan-Symanzik equation in d < 4[
M

∂

∂M
+ β

∂

∂λ
+ βm

∂

∂ρm
+ nγ

]
G(n) = 0

Solution ρm(p) = ρm

(
M
p

) 1
ν

where 1
ν = 2− 4−d

3

Correlation length ξ ∼ p−1
0 where ρm(p0) = 1

This gives ξ ∼ ρ−νm ∼ |τ |−ν with ν = 0,6 for d = 3
For comparison, the measured value is ν ≈ 0,64 so we have got
a more realistic critical exponent here than in Landau-Ginzburg
theory (ν = 0,5).
Up to now we considered only first order in (d − 4). Much more
realistic results are achieved in higher orders.
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Summary

Central Message: QFT is equivalent to statistical mechanics.

Landau-Ginzburg theory describes second order phase
transitions by T -dependent symmetry breakdown. It was adopted
in the Higgs effect.

In superconductivity we can use Landau-Ginzburg to explain the
Meissner effect.

The renormalization group can be used in statistical mechanics
to calculate critical exponents that describe a second order
phase transition.
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