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• 2 + 1: vortices
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– interpretation: vacuum tunneling
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Solitons in a nutshell

• Solitons were first discovered in the 19th century as surface waves on water.

• Whereas usually localized waves change their shape due to dispersion, solitons do not.

• mathematically, solitons can appear in nonlinear diff. equations, the nonlinearity compensates

the dispersion.

• Typical (integrable) examples for nonlinear equations where solitons appear are:

– the KdV-equation ∂tψ + ∂3
xψ + 6ψ∂xψ = 0, e.g. in hydrodynamics

– the nonlinear-Schrödiner equation i∂tψ + ∂2
xψ ∓ 2|ψ|2ψ = 0, e.g. in waveguides

– The sine-gordon equation, ∂2
xψ − ∂2

t ψ = sin ψ, e.g. in condensed matter
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Recap: solitons in 1 + 1 dim space-time

In one of the previous talks, we were looking for

nontrivial, stationary finite energy solutions (to

the e.o.m.) in 1 + 1 dim. space-time with

L =
1

2
(∂φ)

2 − λ

4

“
φ

2 − v
2
”2

,

(for a real, scalar field φ). The energy is

M =

Z
dx

„
1

2

„
dφ

dx

«
+

λ

4

“
φ

2 − v
2
”2
«

,

thus φ(r →∞) = ±v.

Trivial solutions are the vacua (M = 0):

φ±(x) = φ±(+∞) = φ±(−∞) = ±v.
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Recap: solitons in 1 + 1 dim space-time

We found the kink and antikink with M ∼ µv2

(µ2 = λv2), concentrated in a region l ∼ 1
µ.

Jtop :=
1

2v
ε

µν
∂νφ

leads to the conserved charge

Qtop =

Z −∞

−∞
dxJ

0
top(x) =

1

2v
(φ(+∞)− φ(−∞)) ∈ Z,

which implies that kink (Qtop = 1) and antikink

(Qtop = −1) are stable with respect to the

vacuum (Qtop = 0).
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Intermezzo: topological mappings

The asymptotic condition,

φ(r →∞) = ±v,

can be described as a mapping of the 2-point-set (−∞,∞) to the 2-point-set (−v, v), which

is equivalent to a mapping S0 → S0.

Definition: Two continous mappings g and f from X to Y (topological spaces) are homo-

topic if there exists a continuous function (homotopy) H(t, x) : [0, 1] × X → Y with

H(0, x) = f(x) and H(1, x) = g(x).
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Intermezzo: topological mappings

In our cases we are always interested in mappings between spheres, i.e. φ∞ : Sn → Sn as spatial

infinity in Rn is topologically equivalent to S(n−1)

It can be shown that for n ≥ 1 such mappings can be characterized by an integer winding

number (n ∈ Z) which is called the Pontryargin index.

Consider for example S1 → S1. The functions

fa,n(θ) = exp ı(nθ + a) θ ∈ [0, 2π]

for fixed integer n and arbitrary a are homotopic with

Ha,b,n(t, θ) = exp ı (nθ + (1− t) a + tb).
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2+1: Vortices

Consider a complex scalar field with

L = ∂φ
†
∂φ− λ

“
φ
†
φ− v

2
”2

.

The Mass of a soliton would be

M =

Z
d

2
x

»
∂iφ

†
∂iφ + λ

“
φ
†
φ− v

2
”2
–

.

Finiteness requires |φ| −→ v at spatial infinity.

This suggests the ansatz φ(r →∞) = veiθ in

polar coordinates.
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2+1: Vortices, the picture

Writing φ = φ1 + iφ2 we see that

(φ1, φ2) → v(cos θ, sin θ) = v
r(x, y).

This vector points radially outwards.

Computing the gradient of the field,

~∂φ → v

r

„
∂x (x + ıy)

∂y (x + ıy)

«
=

v

r

„
1

−ı

«

leads to the current:

~J = ı
“

~∂φ
†
φ− φ

†~∂φ
”
→ v

r

„−2y

2x

«
.

This is a vector of constant length, 2v whirling

around at spatial infinity.
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2+1: Vortices

Obviously φ maps S1 → S1, thus we know the homotopy group to be Z and vortices are

topologically stable with respect to the vacuum. [φ]n has the same properties and we identify n

as the conserved charge (winding number).

Plugging the behavior of φ, i.e. φ ∼ v and ∂iφ ∼ v
r , into the expression for the energy

yields:

M =

Z
d

2
x

»
∂iφ

†
∂iφ + λ

“
φ
†
φ− v

2
”2
–
∼ v

2
Z

d
2
x

1

r2
.

This is, of course, logarithmically divergent.

What can we do?

• consider vortex-antivortex pairs

• gauge the theory
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2+1: Two vortices

Now consider a vortex and an antivortex (vortex with

negative charge) at some (large) distance R = R1 − R2

(R À a where a is the size of the vortex):

ϕ = φ+(r + R2)φ−(r + R1).

At infinity ϕ → v and ∂ϕ → 0 thus M is finite.

Between R1 and R2, we find ϕ ∼ ve2ıθ.

Now a very rough estimate of the energy is

M ∼ v
2
Z

d
2
x

1

r2
∼ v

2
log

R

a
.

We have an attractive log potential (as in 2-dim. coulomb

case). This configuration cannot be static, vortex and

antivortex tend to annihilate and release energy.
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2+1: Gauging for finite energy

We gauge the theory in the usual way by replacing ∂iφ with Diφ = ∂iφ− ıeAiφ.

Then finite energy can be achieved by requiring

Ai(r →∞) −→ − ı

e

1

|φ|2φ
†
∂iφ =

1

e
n∂iθ

where n is the winding number.

⇒ Diφ → ∂iφ−
φ†∂iφ

|φ|2 φ = ∂iφ(1− φ†φ

|φ|2) = 0

We can then also calculate the flux as

Flux ≡
Z

d
2
x B =

I

C

dxiAi =
n

e

I

C

dxi

d

dxi

θ =
n2π

e
.

This vortex appears as a flux tube in type II superconductors.
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3+1: The hedgehog

In 3 + 1 dimensions we proceed as before. Spatial infinity now is S2, thus we consider scalar

fields φa(a = 1, 2, 3), transforming as a vector ~φ under O(3) with the Lagrangian L =

1
2∂

~φ · ∂~φ− λ
“

~φ2 − v2
”2

. The energy (time-independent) is then:

M =

Z
d

3
x

»
1

2

“
∂~φ
”2

+ λ
“

~φ
2 − v

2
”2
–

Again we have the requirement |~φ(r →∞)| → v, thus ~φ(r = ∞) lives on S2.

The obvious choice for our fields is now

φ
a
(r →∞) = v

xa

r
.

Just like the vortex, this does not yet have finite energy, and we therefore gauge the theory, with

an O(3)-gauge-potential, Ab
µ.
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3+1: The hedgehog, gauging for finite energy

So we replace ∂iφ
a by

Diφ
a

= ∂iφ
a
+ eε

abc
A

b
iφ

c

and choose A such that Diφ
a vanishes at

infinity:

A
b
i(r →∞) =

1

e
ε

bijx
j

r2

If we now consider a small lab at infinity, ~φ points

approximately in the same direction everywhere,

O(3) ist broken down to U(1).

The massless gauge field points radially outwards,

it can be interpreted as the t’Hooft monopol,

which we have learned about earlier.

Its mass has been calculated to be ∼ 137MW
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(d) + (1) ↔ (d + 1): The instanton as a soliton

Let us now consider time-dependent configurations in d space and 1 time dimensions:

S =

Z
d

d
xdt [L] =

Z
d

d
xdt

»
1

2
(∂tφ)

2 − 1

2

“
~∂φ
”2

− V (φ)

–

Upon performing a Wick rotation we get the Euclidian action:

SE =

Z
d

d
xdτ

»
1

2
(∂tφ)

2
+

1

2

“
~∂φ
”2

+ V (φ)

–

For the instanton we require SE =
R

dd+1x
ˆ

1
2δ

ab∂aφ∂bφ + V (φ)
˜

to be finite.

For the solitons we had required M =
R

dDx
ˆ

1
2δ

ab∂aφ∂bφ + V (φ)
˜

to be finite.

Obviously, for d + 1 = D these conditions are equivalent!
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Interpretation of the Instanton: Vacuum tunneling

Now we shall take a look at 0 + 1 dim. space-time, i.e. ordinary (quantum) mechanics (if we

identify φ with the coordinate x). Again consider a double-well potential

V (φ) = (φ
2 − v

2
)
2

φ real, scalar.

We know that for imaginary time we can have instanton solutions which are just the kinks from

1 + 1 dim. space-time!

SE,kink =

Z +∞

−∞
dτ

"
1

2

„
∂φkink

dτ

«2

+ V (φkink)

#
= finite

〈−v|e−ıHt|v〉 =

Z
[dφ]e

iS −→ 〈−v|e−Hτ |v〉 =

Z
[dφ]e

−SE 6= 0

In euclidian space-time we have a finite transition amplitude between the vacua.
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Interpretation of the Instanton: Vacuum tunneling

Classically, the ground state (vacuum) is either

|vac〉 = |v〉 or |vac〉 = | − v〉

Quantum mechanically the vacuum is

|vac〉 =
1√
2

(|v〉+ | − v〉) ,

due to tunneling.

This suggest we interpret the instanton as a

tunneling process between different vacua.

Since in the path integral all path are weighed

with e−SE , configurations with finite action, i.e.

instantons will dominate.
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Instantons and gauge theory

Now, as the final part we consider an nonabelian gauge-theory without scalar fields in euclidian

space.

SE(A) =

Z
d

4
x

1

2g2
trFµνFµν

with Aµ = τa

2 Aa
µ, Fµν = ∂µAν − ∂νAµ + [Aµ, Aν].

Under a gauge transformation U :

A
′
µ = U

−1
AµU + U

−1
∂µU.

Obviously, finite action, i.e. an instanton, can be achieved by the pure gauge:

A(r →∞) = U
−1

∂µU.
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Instantons and gauge theory

Now, for SU(2) we can write

U = exp(ı~ε · ~τ) = u0 + ı~u · ~τ,

with real u0 and ~u, that have to satisfy u2
0 + ~u2 = 1 because U is unitary.

Clearly this is the equation for S3 (S3 is the group manifold of SU(2)).

U : S
3
(infinity in euclid. spacetime) −→ S

3

Now it can be shown that for a mapping f : S3 → S3, hi := f−1∂if the winding number is:

n(S
3 → S

3
) =

−1

24π2

Z
dθ1dθ2dθ3tr (εijkhihjhk) ∈ Z
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Instantons and gauge theory

With the definitions:

F̃µν =
1

2
εµνλρFλρ and Kµ = 4εµνλρtr

»
Aν∂λAρ +

2

3
aνAλAρ

–

we see that ∂µKµ = 2tr
h
FµνF̃µν

i
.

In our case (pure gauge) Kµ = 4
3εµνλρtr [AνAλAρ].

Z
d

4
x tr

h
FµνF̃µν

i
=

1

2

Z
d

4
x∂µKµ =

1

2

Z

S3
dσµKµ = 16π

2
n

Now take a look at the axial-vector current: ∂µJµ
5 = 1

(4π)2
εµνλρtr [FµνFλρ]

Q5 = QR −QL =

Z
d

4
x

1

(16π2)
εµνλρtr [FµνFλρ] = n
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Summary

• Kink(1+1 dim): Mechanical model, tunneling (instanton)

• Vortex(2+1 dim): Coulomb gas, flux tubes (gauge theory)

• Hedgehog(3+1 dim): Magnetic monopole

• Instanton(4 dim): Vacuum tunneling, chiral anomaly

Seminar Theoretische Elementarteilchenphysik SS 06 20



Solitons, Instantons, Vortices David Mross

Literatur

[1] Ta-Pei Cheng and Ling-Fong Li. Gauge theory of elementary particle physics. Springer, 1998.

[2] Bjorn Felsager. Geometry, Particles, and Fields. Springer, 1997.

[3] Steudel Meinel, Neugebauer. Solitonen, Nichtlineare Strukturen. Akademie Verlag, 1991.

[4] A. Zee. Quantum field theory in a nutshell. Princeton University Press, 2003.

Seminar Theoretische Elementarteilchenphysik SS 06 21


