Exercises on 'Elementary Particle Physics'

Prof. H. Dreiner

1. Massless fermions

We now want to find the solutions of the *Dirac* equation for massless particles.

(a) Proceed analogously to exercise 1 of the last sheet. What's the *Dirac* equation for massless particles? Which anticommutation relations do you get? And which hermiticity properties?

Unlike for the massive case the lowest dimensionality matrices satisfying the relations of (1) are now 2×2 .

- (b) Which matrices could that be?
- (c) Show that the massless Dirac equation divides into two decoupled equations for two-component spinors $\chi(\vec{p})$ and $\phi(\vec{p})$:

$$E\chi = -\vec{\sigma} \cdot \vec{p}\chi$$
, $E\phi = +\vec{\sigma} \cdot \vec{p}\phi$.

(d) What can you say about the energy eigenvalues of these two equations? Classify the solutions in terms of the properties particle/antiparticle and helicity.

2. Chirality and helicity

(a) Define the chirality (\equiv handedness) operator $\gamma^5 \equiv i\gamma^0\gamma^1\gamma^2\gamma^3$ and show that

$$\gamma^{5\dagger} = \gamma^5 \; , \quad (\gamma^5)^2 = {1\!\!1} \; , \quad \{\gamma^5, \gamma^\mu\} = 0 \; . \label{eq:gamma_parameters}$$

- (b) Give γ^5 in terms of the α 's and β and compute the commutator $[H, \gamma^5]$ for the massive case. What's about the massless case?
- (c) Compute γ^5 in the *Pauli-Dirac* representation and show that chirality and helicity coincide for
 - (i) m = 0 (massless particles).
 - (ii) $E \gg m$ (ultrarelativistic limit).
- (d) Discuss when which quantities are 'good' quantum numbers.