Exercises on 'Elementary Particle Physics'

Prof. H. Dreiner

1. Nonrelativistic perturbation theory

Consider an electron scattering in some interaction potential $V(\vec{x}, t)$ in times -T/2 < t < T/2. We neglect spin. It was shown in the lecture that the ansatz

$$\psi = \sum_{n} a_n(t)\phi_n(\vec{x})e^{-iE_nt}$$

solves Schroedinger's equation $(H_0 + V(\vec{x}, t)\psi = i\partial_t \psi)$ if the $a_n(t)$ fullfill

$$i\sum_{n} \frac{da_n}{dt} \phi_n(\vec{x}) e^{-iE_n t} = \sum_{n} V(\vec{x}, t) a_n \phi_n(\vec{x}) e^{-iE_n t} ,$$

where the ϕ_n are solutions of the unperturbed problem and orthonormalized to a standard volume V. From this we get

$$\frac{da_f}{dt} = -i\sum_n a_n(t) \int \phi_f^* V \phi_n d^3 x e^{i(E_f - E_n)t} . \tag{1}$$

Suppose that before the interaction, i.e. at time t = -T/2 the particle is in an eigenstate i of H_0 , and that (to first order) the a_n 's remain constant at all times (This is only valid for a small and transient potential). Then

$$\frac{da_f(t)}{dt} = -i \int d^3x \, \phi_f^* V \, \phi_i e^{i(E_f - E_i)t}$$

is solved by

$$a_f(t) = -i \int_{-T/2}^t dt' \int d^3x \phi_f^* V \phi_i e^{i(E_f - E_i)t'},$$

and i.e. at t = +T/2

$$T_{fi} \equiv a_f(T/2) = -i \int_{-T/2}^{T/2} dt \int d^3x \left[\phi_f(\vec{x}) e^{-iE_f t} \right]^* V(\vec{x}, t) \left[\phi_i(\vec{x}) e^{-iE_i t} \right] .$$

Note that from our assumptions the perturbation is only valid for $a_f(t) \ll 1$.

- (a) Go through the first order computation for yourself. We are perturbing $a_n(t)$. How is this given to first order, i.e. what is $a_n^{(1)}$?
- (b) We now want to go to second order. For which indices n of $a_n(t)$ does a perturbation make sense? Let the potential be independent of time and define $V_{fi} \equiv \int d^3x \phi_f^*(\vec{x}) V(\vec{x}) \phi_i(\vec{x})$. Show that then to second order in perturbation equation (1) becomes

$$\frac{da_f}{dt} = \dots + (-i)^2 \left[\sum_{n \neq i} V_{ni} \int_{-T/2}^t dt' e^{i(E_n - E_i)t'} \right] V_{fn} e^{i(E_f - E_n)t} ,$$

where the dots denote the first order terms already given in equation (1).

(c) Show that the second order correction for T_{fi} (in the limit $T \to \infty$) is given by

$$T_{fi} = \cdots - \sum_{n \neq i} V_{fn} V_{ni} \int_{-\infty}^{\infty} dt e^{i(E_f - E_n)t} \int_{-\infty}^{t} dt' e^{i(E_n - E_i)t'}.$$

The last integral is not meaningful. Why? A way out is to add a so called regulator term $-i\epsilon$, $\epsilon > 0$ small, to the energy difference $(E_n - E_i)$. Comment on why this is well defined? Compute the regulated second order contribution for V_{fi} and sketch an interpretation of the result schematically.

2. Spin 1/2 fermions coupled to an electromagnetic field

Remember the minimal coupling presciption

$$i\partial_{\mu} \to i\partial_{\mu} - QA_{\mu}$$
,

where Q is the charge of the particle, i.e. $Q_{e^-} = -e = -|e|$ and $Q_{e^+} = +e = +|e|$, and $A_{\mu} = (\phi, \vec{A})_{\mu}$ is the electromagnetic four-vector potential.

- (a) What are the Dirac equations for an electron field ψ and a positron field ψ_C , each of them coupled to an electromagnetic field A_{μ} .
- (b) Assume (similar to the *Lorentz* transformations) that a local relation between ψ_C and ψ exists. Show that for a C with

$$-(C\gamma^0)\gamma^{\mu*} = \gamma^{\mu}(C\gamma^0)$$

this local relation reads $\psi_C = C\bar{\psi}^T$.

(c) Show that in the Pauli-Dirac representation of the γ -matrices a possible choice for C is

$$C\gamma^0 = i\gamma^2 = \begin{pmatrix} 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0\\ 0 & -1 & 0 & 0\\ 1 & 0 & 0 & 0 \end{pmatrix} .$$

(d) Now let $\psi^{(1)} = u^{(1)}(p)e^{-ip\cdot x}$ and $\phi^{(1)} = v^{(1)}(p)e^{ip\cdot x}$ be two of the 'standard' solutions we found in exercise 1. Show that $\psi_C^{(1)} = \phi^{(1)}$. Interpret the result.

2