Exercises on Theoretical Elementary Particle Physics

Prof. H. Dreiner

- 1. Young tableaux II
 - (a) Using Young tableaux, calculate $\overline{\mathbf{3}} \times \mathbf{3}$ for SU(3), and $\mathbf{2} \times \mathbf{2}$ for SU(2).
 - (b) Starting from SU(3)'s $\mathbf{3}$, $\mathbf{6}$, $\mathbf{8}$, $\mathbf{10}$ determine the shape of the Young tableaux of $\mathbf{\overline{3}}$, $\mathbf{\overline{6}}$, $\mathbf{\overline{8}}$, $\mathbf{\overline{10}}$.
 - (c) In order to have a challenge, tackle SU(3)'s 8×8 . Does it contain a 1, so that thus $8 = \overline{8}$?
- 2. (a) Show that for $\mathbf{M} \in SL(2, C)$ one has $\mathbf{M}^T \in \mathbf{M} = \epsilon$ (hint: use the expression for the determinant of \mathbf{M}). How does this generalize to $\mathbf{M} \in SL(n, C)$? Compare also to $\mathbf{\Lambda}^T \mathbf{g} \mathbf{\Lambda} = \mathbf{g}$.
 - (b) Show that $\chi^T i\sigma^2 \xi$ is a Lorentz-invariant quantity. If $\xi = \chi$, what consequences does this have for the components of the spinors?
- 3. Recall your knowledge about Weyl spinors, (1/2, 0) vs. (0, 1/2), dotted and undotted indices, etc.

Exercises on Theoretical Elementary Particle Physics

Prof. H. Dreiner

- 1. Reduce $\overline{\bf 3} \times \overline{\bf 3}$, ${\bf 3} \times {\bf 3}$, ${\bf 3} \times {\bf 3} \times {\bf 3}$ for SU(3), likewise ${\bf 2} \times {\bf 2} \times {\bf 2}$ for SU(2), $\overline{\bf 5} \times {\bf 5}$, ${\bf 5} \times {\bf 5}$ for SU(5).
- 2. A Lorentz transformation turns the Weyl-spinor ξ into $\mathbf{M}\xi$, with (infinitesimally) $\mathbf{M} = \mathbf{1} \frac{i}{2}\vec{\theta} \cdot \vec{\sigma} \frac{1}{2}\vec{\beta} \cdot \vec{\sigma}$. Show that $\mathbf{M}^{-1} = i\sigma^2 \mathbf{M}(i\sigma^2)^T$.
- 3. Show the following three identities: $\bar{\phi}\bar{\psi}=\bar{\psi}\bar{\phi}=(\phi\psi)^{\dagger}=(\psi\phi)^{\dagger}$. Using $\bar{\sigma}^{\mu T}=(-i\sigma^2)\sigma^{\mu}(i\sigma^2)$, show that $\sigma^{\mu A\dot{B}}=\bar{\sigma}^{\mu\dot{B}A}$; show that $\phi\sigma^{\mu}\bar{\psi}=-\bar{\psi}\bar{\sigma}^{\mu}\phi$.
- 4. Show that $det(p'_{\mu} \sigma^{\mu}) = p_{\mu}p^{\mu}$.
- 5. Starting from the principle of least action, derive the Euler-Lagrange equation for fields (not point particles like in theoretical mechanics).