Exercises on 'Elementary Particle Physics'

Prof. H. Dreiner

- 1. The See-Saw Mechanism (finally!) and CP-violating Phases
 - (a) Restrict to one generation. Remember the *Yukawa*-couplings. How would such a term look like for right-handed neutrinos? What kind of massterm do you get from this if the Higgs gets a VEV?
 - (b) Assume that there is a SO(10) GUT-theory at a scale of about $M_{\rm GUT} \approx 10^{16} GeV$. To fill an SO(10) irrep 16 then a right-handed neutrino comes naturally into play (why?). What can you say about the quantum numbers of the right-handed neutrino, i.e. the hypercharge? Which other massterm can you write down?
 - (c) Assume that the masses are real (not complex) and diagonalize the mass-matrix. Which eigenvalues do you get? Interpret the result.
 - (d) Now consider three generations and allow the masses to be complex. What can you say about the scales appearing in the matrices you use to diagonalize the mass-matrix? One can derive the so called *Maki-Nakagawa-Sakata-matrix*, which is the leptonic analogon to the CKM-matrix of the quarks. What changes now due to the mixing of the neutrinos? What can you say about the CP-violating phases?

Exercises on 'Elementary Particle Physics'

Prof. H. Dreiner

- 2. Nuclear β -Decay and Massive Neutrinos
 - (a) Consider the process $^{14}O \rightarrow ^{14}N^* + e^+ + \nu_e$. By simplifying assumptions like small momentum transfer, conserved vector current hypothesis, neglecting the nuclear wavefunction, using non-relativistic spinors for the nucleons, etc (for the interested student c.f. e.g. Halzen-Martin 12.3), one can show that the corresponding amplitude can be approximated by

$$\mathcal{M} = \frac{G_F}{\sqrt{2}} \left(\bar{u}(p_\nu) \gamma^0 (1 - \gamma_5) v(p_e) \right) (2m_N) (\sqrt{2}) , \qquad (1)$$

with m_N the nucleon mass.

Average the spins and derive the decay rate $d\Gamma$ from this, but **do not(!!!)** negelect electron and neutrino masses.

(b) In a so called *Kurie*-plot one plots $p_e^{-1}(d\Gamma/dp_e)^{1/2}$ against the energy E_e . Sketch the Kurie-plots for vanishing and non-vanishing neutrino masses.