Elementary Particle Physics II

Prof. Dr. H.-P. Nilles

1. The Minimal Supersymmetric Standard Model

All standard model fields can be included in the following superfields:

Quarks:
$$Q_i = (\mathbf{3}, \mathbf{2}, -\frac{1}{6}), \quad U_i^R = (\mathbf{\bar{3}}, \mathbf{1}, \frac{2}{3}), \quad D_i^R = (\mathbf{\bar{3}}, \mathbf{1}, -\frac{1}{3}).$$
 (1)

Leptons:
$$L_i = (\mathbf{1}, \mathbf{2}, \frac{1}{2}), \quad E_i^R = (\mathbf{1}, \mathbf{1}, -1), \quad \left(\nu_i^R = (\mathbf{1}, \mathbf{1}, 0)\right).$$
 (2)

Higgs:
$$H_u = (\mathbf{1}, \mathbf{2}, -\frac{1}{2}), \quad H_d = (\mathbf{1}, \mathbf{2}, \frac{1}{2}).$$
 (3)

Given in the brackets are the transformation properties under $SU(3) \times SU(2) \times U(1)$. The index i = 1, 2, 3 labels the three different generations.

- (a) Write the most general cubic superpotential for these fields which is invariant under the Standard Model gauge group.
- (b) Identify the terms that conserve baryon and lepton number and those that do not. Verify that R-parity $P_R \equiv (-1)^{3(B-L)+2s}$ forbids exactly those terms that violate baryon or lepton number.

2. The MSSM Higgs sector

- (a) Using the R-parity preserving part of the superpotential just derived, find the part of the scalar potential that contains mass terms for $H_u = (H_u^+, H_u^0)$ and $H_d = (H_d^0, H_d^-)$.
- (b) Add to that the D-term contribution to the scalar potential coming from the gauge couplings in the Lagrangian:

$$V_{D-term} = \frac{1}{2} \sum_{a} g_a^2 \left(\phi^* T^a \phi \right)^2 \,, \tag{4}$$

where ϕ should be replaced with H_u and H_d respectively.

- (c) Looking at the full scalar potential for the Higgs fields in unbroken SUSY, is a breaking of electroweak symmetry possible?
- (d) Include the soft SUSY breaking terms

$$\mathcal{L}_{soft} = -m_{H_u}^2 |H_u|^2 - m_{H_d}^2 |H_d|^2 - (bH_uH_d + c.c.) + \cdots$$
(5)

in the scalar potential. We want the resulting potential's minimum to break electroweak symmetry.

(It is possible to set $\langle H_u^+ \rangle = \langle H_d^- \rangle = 0$ through an SU(2) gauge transformation. b, $\langle H_u^0 \rangle$ and $\langle H_d^0 \rangle$ can be made real and positive by a phase redefinition.) You should now have

$$V = \left(|\mu|^2 + m_{H_u}^2 \right) \left| H_u^0 \right|^2 + \left(|\mu|^2 + m_{H_d}^2 \right) \left| H_d^0 \right|^2 - \left(b \, H_u^0 H_d^0 + c.c. \right) \quad (6)$$

+ $\frac{1}{8} \left(g^2 + g'^2 \right) \left(\left| H_u^0 \right|^2 - \left| H_d^0 \right|^2 \right)^2.$

- (e) One requirement for successful electroweak symmetry breaking is a negative $(mass)^2$ term for at least one linear combination of the Higgs fields. What inequality does b have to satisfy to achieve this? The second requirement is that the potential should be bounded from below. When is this guaranteed?
- (f) Show that $|\mu|^2$, $m_{H_{u,d}}^2$ and b can be related through m_Z^2 if we require agreement with the experimental result for the Higgs VEV:

$$\langle v \rangle^2 = \langle H_u^0 \rangle^2 + \langle H_d^0 \rangle^2 = \frac{2 m_Z^2}{g^2 + g'^2} \approx (174 \,\text{GeV})^2 \,.$$
(7)

(Since only the sum of the squares of $\langle H_u^0 \rangle$ and $\langle H_d^0 \rangle$ is fixed experimentally, the parameter β is introduced to parameterize the remaining choice. One defines $\tan \beta \equiv \langle H_u^0 \rangle / \langle H_d^0 \rangle$.)

- (g) (*) Check that the relations you found satisfy the constraints in (e).
- (h) After electroweak symmetry breaking, three of the eight real scalar degrees of freedom of the two Higgs multiplets are swallowed to give mass to the Z⁰ and W[±] bosons. The remaining physical fields are usually named A⁰ (a neutral CP-odd pseudoscalar), H[±] (charged scalars that are conjugates to each other), H₀ and h₀ (a heavy and light CP-even scalar field). Obtain the mass matrix for H₀ and h₀ (they are a mixture of ℜ(H⁰_u) ⟨H⁰_u⟩ and ℜ(H⁰_d) ⟨H⁰_d⟩). (You can use m²_{A⁰} = 2b/sin 2β to simplify the notation.) Show that m_{h⁰} has an upper bound.