Universität Bonn Physikalisches Institut Theoretische Physik Summer term 2004 Example sheet 8 2004-07-19

Elementary Particle Physics II

Prof. Dr. H.-P. Nilles

1. Orbifold symmetries

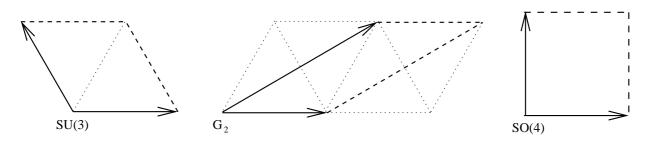


Figure 1: SU(3), G_2 and SO(4) torus lattices.

Determine the fixed points and the fundamental domains of the torus lattices in fig. 1:

- (a) under a \mathbb{Z}_2 twist.
- (b) under a \mathbb{Z}_3 twist.

2. 5d Orbifold gauge symmetry breaking

We want to compactify a 5d, N = 2, SU(3) gauge multiplet on $S^1/(\mathbb{Z}_2 \times \mathbb{Z}'_2)$, where the S^1 radius is R. These spacetime symmetries identify points in the compact $x^4 \equiv y$ direction as follows:

$$S^{1}: \quad y \equiv y + 2\pi R, \qquad \mathbb{Z}_{2}: \quad y \to -y, \qquad \mathbb{Z}'_{2}: \quad y \to \pi R - y. \tag{1}$$

- (a) Show that the fundamental domain is $y = [0, \frac{\pi R}{2}]$.
- (b) Denoting the parities under Z₂ and Z'₂ by (±, ±), show that only a field with (+, +)-parity can have a massless mode in 4d.
 (Take a field φ(x^μ, y), expand it in Fourier components, check the parities, then check the equation of motion □⁽⁵⁾φ = 0.)

(c) The \mathbb{Z}'_2 parities of the gauge fields $A_M = A^a_M T^a$ (where T^a are the generators of SU(3)) can be expressed as

$$A_M(x,y) = \Lambda_M^N P A_N(x,\pi R - y) P^{-1}$$
(2)

where $\Lambda = \text{diag}(1, 1, 1, 1, -1)$ is required to reproduce the \mathbb{Z}_2 parity assignments for P = 1.

Check that the choice of P = diag(-1, -1, 1) breaks the gauge symmetry from SU(3) to $SU(2) \times U(1)$. (Hint: Check $PT^a P^{-1}$.)