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1. Precession of perihelia

From the last sheet we know that the shape of Schwarzschild trajectories is given by
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where E and J2 are constants of the motion. Also, we find that
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is a solution of (1). In weak fields, we can expand
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r
. (3)

(a) Determine E and J2 by looking at the aphelion r = r+ and perihelion r = r−

of a planet in bound orbit around the sun, for general B(r). (At r± , dr/dφ

vanishes.)

(b) Show that the amount of orbital precession per revolution is

∆φ = 2|φ(r+)− φ(r−)| − 2π , (4)
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(c) Show that for weak fields, we can use
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which makes the first term in (5) quadratic in 1/r, and that we can then write
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(d) Determine C in the limit r →∞. You should get

C = 1− 4 MG

L
+ . . . , (8)
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(e) Calculate ∆φ. (You can approximate the result of the integral with
(
1 + MG

L

)
π.)

(f) Determine the total precession ∆φ for Mercury over the time of a century.

(415 revolutions per century; L = 55.3× 109 m; MG = 1475 m).

The observed value is (43.11± 0.45) arcseconds.
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