Exercises on Elementary Particle Physics II Prof. Dr. H.-P. Nilles

1. Gauge invariant couplings

A left-chiral superfield ϕ transforms under a U(1) gauge transformation as

$$\phi \to e^{-2iq\Lambda}\phi$$

where Λ is a left-chiral superfield and q is the U(1) charge of ϕ . Recall that the vector superfield $V(x, \theta, \overline{\theta})$, which contains the U(1) gauge boson $V_{\mu}(x)$, transforms as

$$V \to V' = V + i(\Lambda - \Lambda^{\dagger}).$$

- (a) Show that $\phi^{\dagger} e^{2qV} \phi$ is gauge invariant.
- (b) Evaluate the D-term of this expression.Hint: Use the Wess-Zumino gauge and the Taylor expansion

$$e^{2qV} = 1 + 2qV + 2q^2V^2 + \dots$$

The result of the first summand (1 + ...) is already known from Ex.4.2.(c).

2. D-term SUSY breaking- part I

Begin with the Lagrangian

$$\mathcal{L} = \frac{1}{64} \int d^2\theta \ W^{\alpha} W_{\alpha} + \text{h.c.} + \int d^2\theta d^2\bar{\theta} \ \left[\phi^{\dagger} e^{2qV} \phi + 2\xi V \right]$$

with ξ real, $\phi = (\varphi, \psi, F)$ and q is the charge of ϕ .

- (a) Why is the term $2\xi V$ allowed?
- (b) Solve the equations of motion for the auxiliary field D. What is the scalar potential $V(\varphi)$?
- (c) Discuss the potential $V(\varphi)$ for the two cases: $q\xi < 0$ and $q\xi > 0$. When is SUSY broken? When is the U(1) gauge symmetry broken?