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1. Vectorsuperfields for the supersymmetric U(1) gauge theory

Global N = 1 supersymmetry allows one more supermultiplet, the vectormulti-
plet, which contains a supersymmetric version of a gauge theory. It consists of the
usual spin one gauge boson Vµ as well as its spin one half superpartner λ called the
gaugino. There also exists a superfield formulation of the vectormultiplet completely
analogous to the chiral superfield describing the chiral multiplet (ϕ, ψ). The appro-
priate superfield V is the vectorsuperfield defined by V = V † with the expansion

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) + θσµθ̄Vµ(x)

+
1

2
iθθ [M(x) + iN(x)]− 1

2
iθ̄θ̄ [M(x)− iN(x)]

+iθθθ̄

[
λ̄(x) +

i

2
σ̄µ∂µχ(x)

]
− iθ̄θ̄θ

[
λ(x) +

i

2
σµ∂µχ̄(x)

]
+

1

2
θθθ̄θ̄

[
D(x)− 1

2
∂µ∂

µC(x)

]
. (1)

(a) Check that (1) is indeed a vectorsuperfield.

(b) Compare the expansion of V to the one of the vectorsuperfield defined by Λ+Λ†

where ΛL(x, θ) = Λ(x)+
√

2θψΛ(x)+θθFΛ(x) is a left-chiral superfield, here given
in the left-chiral representation. What is the interpretation of the transformation

V 7→ V + Λ + Λ† ? (2)

Hint: Work in the left-chiral representation by shifting the argument xµ of Λ†.
How does Vµ transform?

(c) Use an appropriate Λ in (2) to transform V into the Wess-Zumino gauge
VWZ, i.e. to obtain C(x) = χ(x) = M(x) = N(x) = 0. What is the highest
non-vanishing power of VWZ? Calculate VWZ, V 2

WZ as well as V 3
WZ.

To construct an action exhibiting the symmetry (2) as a gauged symmetry we have
to find an adequate gauge invariant quantity. This will be the building block of any

1



gauge invariant action. Exploiting the gauge invariance of the gaugino λ w.r.t. (2) in
WZ-gauge we define the supersymmetric field strength of V by

Wα = −1
4
D̄D̄DαV, W̄α̇ = −1

4
DDD̄α̇V. (3)

Note that the lowest component (in θ, θ̄) of Wα is the gauge invariant gaugino λα.

(d) Show that (3) defines a gauge invariant, left-chiral superfield! How do Wα, W̄α̇

transform under Lorentz transformations? Expand Wα in its component fields.
Hint: Translate VWZ, Dα and D̄α̇ into the left-chiral representation. Finally prove
and use σµσ̄ν − ηµν = −2iσµν.

(e) The simplest SUSY, gauge as well as Lorentz-invariant action for a vectorsuper-
field reads

SU(1) =

∫
d4xdθ2W αWα. (4)

Why is this SUSY-invariant? Determine its component expression

LU(1) = −1
2
F µνFµν − 2iλσµ∂µλ̄+D2 + i

4
εµνρσFµνFρσ, (5)

with field strength Fµν . The last term is imaginary and absent after adding the
hermitian conjugate to (4). Note also the presence of the new auxiliary field D.
Hint: Check and use tr(σµν) = 0 and σµνσρσ = 1

4
(ηµρηνσ − ηµσηνρ)− i

4
εµνρσ.

2. Gauge invariant matter couplings & Super Yang-Mills theories

So far we have considered a supersymmetric U(1) gauge theory. However, the way
matter couplings are realized in supersymmetric actions will guide us to the non-
abelian generalizations of Ex. 8.1.

Consider a chiral superfields Φ transforming under a global symmetry

Φ 7→ Φ′ = e−iλaρ(Ta)Φ, λa ∈ R, a = 1, . . . , dim(g), (6)

in a representation1 ρ of a Lie algebra g with generators Ta. In order to gauge this
symmetry consistently the transformed superfield Φ′ has to remain chiral.

(a) Check that (6) respects the chirality of Φ for λ ∈ R constant and for λ ≡ Λ(x, θ)
a complete chiral superfield. Althought W (Φ) can be arranged to be gauge
invariant, Φ†Φ cannot. Determine its transformation behaviour.

(b) In order for this to be gauge invariant introduce a minimal coupling of the
vectorsuperfield to the matter contained in the chiral superfield of the form

Lmatter ⊃ Φ†eV Φ
∣∣
θ2θ̄2 , V = V aTa, a = 1, . . . , dim(g). (7)

Determine the right transformation property of eV for gauge invariance. What
is the first order transformation of V ? Can you still perform the WZ-gauge?

1In the following we will omit the letter ρ for convenience.
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(c) Rewrite (7) in the left-chiral represenation by shifting xµ. This yields eV −2iθσµθ̄∂µ .
Why do you expect the covariant derivative? Calculate the D-term (θ2θ̄2-term)
of (7) in the WZ-gauge in the left-chiral representation using (VWZ)n = 0 for
n ≥ 3, thus eVWZ = 1 + VWZ + 1

2
V 2

WZ. Identify the covariant derivatives.

(d) Turning to the kinetic term of the non-abelian gauge sector we have to generalize
(4) further. The non-abelian field strength is defined by

Wα = −1
4
D̄D̄

(
e−VDαe

V
)
, W̄α̇ = 1

4
DD

(
eV D̄α̇e

−V
)
. (8)

How does Wα transform under a gauge transformation of eV ? Insert eVWZ =
1 + VWZ + 1

2
V 2

WZ to deduce

Wα = −1
4
D̄D̄DαV + 1

8
D̄D̄ [V,DαV ] .

Compare this to the abelian case (3). Calculate Wα explicitly. You obtain the
same result as in Ex. 8.1, (d), replacing ordinary derivatives by covariant ones.

(e) Scale the superfield by V 7→ 2gV , where g denotes the gauge coupling con-
stant. Next, introduce a complex coupling constant τ = Θ

2π
+ 4πi

g2 containing the
theta-angel Θ and determine the action of the gauge sector given by

Lgauge =
1

32π
Im

(
τ

∫
d2θTrW αWα

)
. (9)

Hint: TrW αWα is identical to (5) with covariant derivatives instead of ordinary
ones. Then, multiply this by τ and determine the imaginary part Im.

(f) Combine the matter and gauge sector of the action. Integrate out the auxiliary
fields to determine the full scalar potential.

The result reads

L = Lgauge + Lmatter

= 1
32π

Im(τ

∫
d2θTrW αWα) +

∫
d2θd2θ̄2Φ†e2gV Φ +

(∫
d2θW (Φ) + h.c.

)
= Tr

(
−1

4
F µνFµν − iλσµDµλ̄

)
+ Θ

32π2 g
2TrFµνF̃

µν

+(Dµϕ)†Dµϕ− iψσµDµψ̄ + i
√

2gϕ†λψ − i
√

2gψ̄λ̄ϕ

−1
2

∂2W

∂ϕiϕj
ψiψj − 1

2

∂2W̄

∂ϕ̄iϕ̄j
ψ̄iψ̄j − V (ϕ†, ϕ) + total derivatives, (10)

with F̃ µν = 1
2
εµνρσFρσ, the scalar potential

V (ϕ†, ϕ) = F †F + 1
2
D2 =

∑
i

∣∣∣∣∂W∂ϕi

∣∣∣∣2 +
g2

2

∑
a

∣∣ϕ†Taϕ
∣∣2 (11)

and covariant derivatives

Dµλ = ∂µλ− ig
[
V b

µ , λ
]
, Dµϕ = ∂µϕ− igV a

µ Taϕ,

Dµλ = ∂µλ− igV a
µ Taλ, Fµν = ∂µVν − ∂νVµ − ig [Vµ, Vν ] . (12)

3


