Exercises on Theoretical Astroparticle Physics

Prof. Dr. H.-P. Nilles – P.D. Dr. S. Förste

In this exercise sheet we will treat the seesaw mechanism and neutrino oscillations.

1. Dirac-Majorana mass term and the seesaw mechanism

The most general mass term for for a Dirac spinor Ψ is called the *Dirac-Majorana mass* term. It is a combination of the Dirac and Majorana mass terms from the previous sheet.

(a) Show

$$(\Psi^c)_{L,R} = (\Psi_{R,L})^c \text{ and } \overline{(\Psi_{L,R})^c} (\Psi_{R,L})^c = \overline{\Psi_{R,L}} \Psi_{L,R}.$$
 (1)

(b) Using (a) show that

$$\mathcal{L}_m = -\frac{1}{2} \left[2m_D \overline{\Psi_L} \Psi_R + m_L \overline{\Psi_L} (\Psi^c)_R + m_R \overline{(\Psi^c)_L} \Psi_R \right]$$
(2)

is the same as the following

$$-\frac{1}{2} \begin{pmatrix} \overline{\Psi_L} & \overline{(\Psi^c)_L} \end{pmatrix} \mathcal{M} \begin{pmatrix} (\Psi^c)_R \\ \Psi_R \end{pmatrix}$$
(3)

where

$$\mathcal{M} = \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \tag{4}$$

is referred to as the *neutrino mass matrix*.

(c) From now on we set $m_L = 0$ and $m_D \ll m_R$. We can diagonalize \mathcal{M} using an orthogonal matrix A

$$A^T \mathcal{M} A = \operatorname{diag}(m_1, m_2). \tag{5}$$

Show that to the first non-vanishing order in the (small) parameter $\rho := m_D/m_R$ that

$$\begin{pmatrix} -m_D^2/m_R & 0\\ 0 & m_R \end{pmatrix}.$$
 (6)

Find the rotation matrix A to the first order in ρ for the diagonalization.

(d) Why do we have a problem with (6)? To circumvent this problem we write

$$\begin{pmatrix} -m_D^2/m_R & 0\\ 0 & m_R \end{pmatrix} = \begin{pmatrix} m_D^2/m_R & 0\\ 0 & m_R \end{pmatrix} K^2,$$
(7)

i.e. $\mathcal{M} = A^T \operatorname{diag}(m_1, m_2) K^2 A$. Determine the matrix K and write the \mathcal{L}_m in mass eigenstates. Are these mass eigenstates Dirac particles or Majorana particles?

(e) We have assumed $\rho \ll 1$. What does this imply for mass eigenstates?

2. Neutrino oscillation

Let's assume that there are n orthonormal flavour eigenstates $|\nu_{\alpha}\rangle$. These states are connected to the n mass eigenstates via an unitary mixing matrix U

$$\nu_{\alpha}\rangle = U_{\alpha i}|\nu_i\rangle \tag{8}$$

- (a) Assuming that the mass eigenstate $|\nu_i\rangle$ are stationary states and were emitted with momentum p by a source at x = 0 and t = 0 what is the form of $|\nu_i(x,t)\rangle$?
- (b) What is the form of the Hamiltonian of deep relativistic particle?
- (c) Using (a) and (b) write down the time-dependent transition amplitude $A(\alpha \to \beta)(t)$ for a flavour convertion $\nu_{\alpha} \to \nu_{\beta}$. Simplify it further using L = x = ct being the distance between source and detector and using $E \cong p$ for the neutrino energy.
- (d) Obtain the transition probability P from A. What is the probability of finding the original flavour?
- (e) We now assume that we have two flavours and have one mixing angle. What's the form of the unitary matrix U? Compute $P(\alpha \rightarrow \beta)$ for this case.