Exercises on Group Theory

Dr. Christoph Lüdeling

-Home Exercises-

H2.1 Group Actions

A group action is a homomorphism $G \to \text{Sym}(X)$ from a group G to the group of bijections of a set X.

- (a) Show that if a group action is *regular*, then there exists a bijection between the group G and X.
- (b) Show that the subgroup $N = \{g \in G | gx = x \forall x \in X\}$ is a normal subgroup and the quotient group G/N acts *faithfully* on X.
- (c) Show that for $x \in X$ the *little group* G_x is a subgroup of G and that G acts transitively on the *orbit* Gx.
- (d) Show that being in an orbit is an equivalence relation which we denote by \sim .
- (e) Prove the *orbit-stabilizer theorem* which states: Given $x \in X$, there is a bijection between the orbit Gx of x and the set of left cosets of the stabilizer G_x of x given by

$$gx \longmapsto gG_x$$
.

- (f) Consider the following group actions:
 - The symmetric group S_n acting on an *n*-element set.
 - The orthogonal group O(n) acting on \mathbb{R}^n
 - The orthogonal group O(n) acting on the (n-1)-sphere S^{n-1}
 - Any group G acting on itself by left-multiplication $g \rightarrow hg$
 - Any group G acting on itself by conjugation $g \to hgh^{-1}$

Which of these actions is *faithful*, *transitive* or *free* and what are the group orbits?

(g) What is \mathbb{R}^n / \sim for the O(n) action?

H2.2 More Isomorphism Theorem

Consider the following group homomorphisms:

- $G_1 \times G_2 \to G_1, (g_1, g_2) \to g_1$
- $\mathbb{R}^n \to \mathbb{R}^r, (x_1, \dots, x_n) \to (x_1, \dots, x_r)$ with r < n
- det : $GL(n) \to \mathbb{R}^*$
- $\mathbb{R} \to U(1), x \to e^{\mathrm{i}x}$

Show that these maps are indeed homomorphisms. Use the Isomorphism theorem to find a normal subgroup given by the kernel. What is the corresponding isomorphism?

H2.3 More on Groups

- (a) Let $H \subset G$ be a subgroup. Show that the number of elements in each left coset is the same e.g. by constructing a bijection. Deduce from this that the order of H divides the order of G.
- (b) Show that a group whose order is prime is necessarily cyclic.
- (c) Consider a group G with |G| = pq with p,q both prime. Show that every proper subgroup of G is cyclic.
- (d) Let $g \in G$ with $|G| < \infty$. Show that $g^{|G|} = e$.
- (e) List all the subgroups of any group G whose order is a prime number.
- (f) Show that for p prime, the set $\mathbb{Z}_p^* = \mathbb{Z}_p \{0\}$ is an Abelian group under multiplication.