Exercise 5 17. Mai 2010 SS 10

Exercises on Group Theory

Dr. Christoph Lüdeling

-Home Exercises-

H 5.1 Permutations

(a) Show that the signum defined by

sign:
$$S_n \longrightarrow \{\pm 1\}$$

 $\sigma \longmapsto \frac{P(x_{\sigma(1)}, \dots, x_{\sigma(n)})}{P(x_1, \dots, x_n)}$, with $P(x_1, \dots, x_n) = \prod_{1 \le i < j \le n} (x_i - x_j)$,

is a group homomorphism.

- (b) Using that each permutation σ can be written as a composition of transpositions, $\sigma = \tau_1 \dots \tau_r$, deduce that $\operatorname{sign}(\sigma) = (-1)^r$. Deduce that although r is not well defined, we can always say if it is even or odd.
- (c) Show that the alternating group, defined as

$$A_n = \{ \sigma \in S_n | \operatorname{sign}(\sigma) = 1 \}$$

is a normal subgroup of S_n . What is the order of A_n ?

(d) Using the notation,

$$\sigma = \begin{pmatrix} 1 & \dots & n \\ \sigma(1) & \dots & \sigma(n) \end{pmatrix} .$$

show that

$$\sigma^{-1} = \begin{pmatrix} \sigma(1) & \dots & \sigma(n) \\ 1 & \dots & n \end{pmatrix}$$
$$\begin{pmatrix} 1 & \dots & n \\ \sigma(1) & \dots & \sigma(n) \end{pmatrix} = \begin{pmatrix} \pi(1) & \dots & \pi(n) \\ \sigma(\pi(1)) & \dots & \sigma(\pi(n)) \end{pmatrix}$$
$$\sigma\pi\sigma^{-1} = \begin{pmatrix} \sigma(1) & \dots & \sigma(n) \\ \sigma(\pi(1)) & \dots & \sigma(\pi(n)) \end{pmatrix}$$

(e) What are the conjugacy classes of S_4 and A_4 ? How many elements do they have?

H 5.2 Cayley's Theorem

(a) Consider a finite group G and the map

$$\pi: G \longrightarrow S_n, \qquad n = |G|,$$
$$g \longmapsto \pi(g) = \begin{pmatrix} e & g_1 & \dots & g_{n-1} \\ g & gg_1 & \dots & gg_{n-1} \end{pmatrix}.$$

Show that π is an group homomorphism.

- (b) Show that π is injective. This implies that G is isomorphic to $\pi(G)$ and thus can be considered as a subgroup of S_n .
- (c) Show that the action of $\pi(G)$ on an *n*-element set is regular.
- (d) Show that $\pi(g)$ consists of cycles of the length $\operatorname{ord}(g)$.
- (e) Use this to show that all groups of prime order are cyclic.

H 5.3 \mathbb{Z}_N irreps

(a) Find all irreducible representations of the cyclic group Z_N. *Hints:* What does the Abelianity of Z_N imply about the dimensions of the representation spaces? What does finiteness of Z_N imply? Use the formula

$$N = \sum_{\mu} n_{\mu}^2$$

where the sum runs over all irreducible representations μ and n_{μ} is the dimension.

(b) Use the orthogonality relations to deduce the formula

$$\frac{1}{N} \sum_{j=0}^{N-1} e^{2\pi i n j/N} e^{-2\pi i n' j/N} = \delta_{nn'}$$