Exercises on Group Theory

Dr. Christoph Lüdeling

-Home Exercises-

H 8.1 Normal discrete subgroups of Lie groups

Show that if a Lie group G has a discrete normal subgroup $N \triangleleft G$, then N lies in the center of G.

H 8.2 SO(3) geometry

- (a) Show that each $O \in SO(3)$ has an eigenvector with eigenvalue one. This allows us to parametrize SO(3) with a unit vector \hat{n} and a rotation angle α . Show that SO(3) can be parametrized by a three-dimensional ball with opposite points identified on the boundary.
- (b) Show that SO(3) is not simply connected, i.e. there exists a closed cycle which is not contractable.
- (c) Show that the Lie-algebra $\mathfrak{so}(3)$ is the vector space of antisymmetric matrices. Use the basis

$$(L_i)_{ik} = \epsilon_{ijk}, \qquad i = 1, \dots, 3,$$

to show the commutator

$$[L_i, L_j] = \epsilon_{ijk} L_k$$

H 8.3 Algebraic equivalence of SO(3) and SU(2)

(a) Consider the set of Hermitean traceless 2×2 matrices.

$$A = \{ m \in \mathbb{C}^{2 \times 2} | \operatorname{tr} m = 0, \ m = m^{\dagger} \}$$
 (1)

First show that the Pauli matrices form a basis of A. Thus for $m \in A$ we can write $m = m_i \sigma_i$ with,

$$\sigma_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \qquad \sigma_2 = \left(\begin{array}{cc} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{array} \right), \qquad \sigma_3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right),$$

(b) Show that for $U \in SU(2)$ and $m \in A$ we have $U^{\dagger}mU = n \in A$. This allows us to define a map

$$\omega: SU(2) \longrightarrow \operatorname{Aut}(\mathbb{R}^3)$$

$$U \longmapsto \omega(U)$$

such that $n_i = \omega(U)_{ij}m_j$. Deduce the formula $\omega(U)_{ij} = \frac{1}{2}\operatorname{tr}\left(\sigma_i U^{\dagger}\sigma_j U\right)$.

- (c) Show that ω is a homomorphism, i.e. $\omega(UV)_{ik} = \omega(U)_{ij}\omega(V)_{jk}$.
- (d) Show that $\omega(U)_{ij} = \omega(U)_{ji}^{-1}$. This implies $\omega(U) \in O(3)$.
- (e) Use the connectedness of SU(2) to argue that $det(\omega(U)) = +1$, i.e. $\omega(U) \in SO(3)$.
- (f) Show that the Lie-algebra $\mathfrak{su}(2)$ is equal to A as a vector space.
- (g) Show that $\mathfrak{su}(2)$ is isomorphic to $\mathfrak{so}(3)$ as Lie-algebras.

This already shows that there is a geometrical connection between SO(3) and SU(2). We will investigate this further on the next sheet.

H 8.4 Lie Bracket

- (a) Show that a vector field $X = X^i(x)\partial_i$ is invariant under local coordinate transformations.
- (b) Show that for two vector fields X and Y the product $X^i \partial_i Y^j \partial_j$ is not invariant under local coordinate transformations.
- (c) Show that the Lie bracket $\mathcal{L}[X,Y]$ is invariant under local coordinate transformations. Hint: Write the transformation matrix in terms of the old and new coordinates.