Exercises on Theoretical Particle Physics II

Dr. S.Förste

DUE 06/07/2010

On the fourth exercise sheet, we discussed a simple SUSY model with a U(1) gauge symmetry. The last exercise sheet was devoted SUSY breaking in general and to F-term breaking in particular. Now we want to discuss another SUSY breaking mechanism, namely D-term breaking. In case the theory has a U(1) gauge symmetry, this can be done using the Fayet-Iliopoulos mechanism.

6.1 D-term SUSY Breaking

(17 credits)

We consider the Lagrangian

$$\mathcal{L} = \int d^2\theta d^2\bar{\theta} [\Phi^{\dagger} e^{2qV} \Phi + 2\xi V] + \frac{1}{4} \int d^2\theta W^{\alpha} W_{\alpha} + \text{h.c.}$$
 (1)

where $\Phi = (\varphi, \psi, F)$ is a chiral superfield, V a vector superfield (use WZ gauge), q the U(1) charge of Φ , and ξ a real parameter (the Fayet-Iliopoulos parameter).

- (a) On exercise sheet 4, it was shown that the last two terms in (1) are both SUSY and gauge invariant. Argue that the first term $[\Phi^{\dagger}e^{2qV}\Phi + 2\xi V]$ is invariant as well. (2 credits)
- (b) Calculate \mathcal{L} and the D-term equation of motion from (1). What is the scalar potential $V(\varphi)$? Hint: Expand $e^{2qV} = 1 + 2qV + 2q^2V^2 + \dots$ Work in WZ gauge and use the results from the previous exercise sheets. (6 credits)

Now we want to discuss the two possible cases (i) $q\xi < 0$ and (ii) $q\xi > 0$.

- (c) Which symmetries are broken in the cases (i) and (ii)? (2 credits)
- (d) In case (i), we see from the shape of the scalar potential $V(\varphi)$ that its radial component gets massive while its angular component stays massless. Verify this via a computation. Since φ carries a charge, the vev $\langle \varphi^* \varphi \rangle$ breaks the U(1) gauge symmetry. Calculate the resulting mass for the gauge boson V_{μ} . Is it possible to write down a massive Dirac fermion? What is the relation between the masses of the fermion and the gauge boson? Explain the SUSY Higgs mechanism.
- (e) In case (ii), all particles except φ stay massless. Show this via explicit calculation. Also calculate the mass of φ .