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7.1 Supergravity as gauged Supersymmetry (14 credits)

In this exercise we want to gauge supersymmetry to obtain supergravity and its
coupling to matter. For this we first consider a simple massless chiral superfield in
the on-shell formulation, consisting of a complex scalar φ and a Weyl spinor ψ. The
Lagrangean reads

L0 = ∂µφ
∗∂µφ+ iψ̄σ̄µ∂µψ .

It is invariant up to a total derivative under global SUSY transformations

δφ =
√

2ǫWψ , δψ = −i
√

2 (∂µφ)σµǭW ,

where ǫW denotes a Weyl transformation parameter. By iterating the Noether
procedure we want to obtain a locally supersymmetric Lagrangean up to a certain
order.

(a) We rewrite the fields as φ = 1√
2
(A+ iB) and Ψ =

(

ψ

ψ̄

)

where A,B are real scalar

fields and Ψ is a Majorana spinor. Show that the action becomes

L0 =
1

2
∂µA∂

µA+
1

2
∂µB∂

µB +
i

2
Ψ̄γµ∂µΨ ,

and the SUSY transformations become

δA = ǭΨ , δB = iǭγ5Ψ , δΨ = −iγµ∂µ (A+ iγ5B) ǫ ,

where ǫ =
(

ǫW
ǭW

)

. (3 credits)

(b) Now we replace ǫ by ǫ(x). Show that this leads to a variation of L0 of the form

δL0 = (∂µǭ ) j
µ , with jµ = γν (∂ν (A− iγ5B)) γµΨ .

(3 credits)

(c) We want to cancel this variation by adding a Rarita–Schwinger field Ψµ trans-
forming as δΨµ = 2κ−1∂µǫ. How does L1 have to look in order to cancel δL0

with the variation of Ψµ? Find for the total variation of the new action

δ(L0 + L1) = iκΨ̄µγνǫTµν +
iκ

2
ǫµνρσΨ̄µγµ∂ρǫA

←→
∂σB +

iκ

2
ǫµνρσ∂ρΨ̄µγµǫA

←→
∂σB ,

with A
←→
∂σB := A∂σB − B∂σA. Identify the energy momentum tensor Tµν .

(4 credits)
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(d) To cancel the first term one needs1 to add a spin two field transforming as
δhµν = − i

2
ǭ (γµΨν + γνΨµ). Show that the required Lagrangean is precisely the

linearized coupling of gravity to matter. Hint: Replace ηµν → gµν = ηµν + hµν ,

γµ∂µ → γν
(

δµν − 1
2
hνρη

ρµ
)

∂µ and d4x→ √−gd4x in the action with g = det gµν
and expand L0 to first order in hµν . det(1+H) = 1+trH+O(H2) . (4 credits)

7.2 Decoupling Gravity in the Scalar Potential (6 credits)

We want to find the globally supersymmetric Lagrangean

Lglob =

∫

d4θK(Φ,Φ†) +

∫

d2θW (Φ) + h.c. .

We want to obtain the resulting scalar potenital in the gravity decoupling limit of
the locally supersymmetric scalar Lagrangean

Vloc = −e−G
(

3 +Gij̄GiGj̄

)

, (1)

where

G = −K − log |W |2 , (2)

and Gi = G,i, G
ij̄ = (G−1)ij̄ .

(a) In the expression for G we have set M = 1 where M is the gravity scale. What
are the mass dimensions for K,W ? What is the mass dimension of G? Rewrite
(2) and (1) by multiplying the terms with appropriate powers of M . (2 credits)

(b) Write Vloc in terms of K and W . Assume a canonical Kähler potential of the
form K = Φ†Φ. (2 credits)

(c) Show that in the gravity decoupling limit M → ∞ one obtains the globally
supersymmetric scalar potential Vglob. (2 credits)

1This can be shown but is rather tedious.
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