Exercises on Theoretical Particle Physics II Prof. Dr. H.P. Nilles _ Dr. C. Lüdeling

DUE 07.06.2011

8.1 No Scale Model

 $(13 \ credits)$

Take $\mathcal{N} = 1$ supergravity with three chiral superfields S, T and C. The Kähler potential (with $M_P = 1$) is

$$K = -\log(S + S^*) - 3\log(T + T^* - CC^*)$$
(1)

The superpotential is

$$W = C^3 + a \exp(-\alpha S) + b, \tag{2}$$

where a and b are arbitrary complex numbers and $\alpha > 0$. These additional terms will enable us to fix $\langle S \rangle$.

- (a) First, drop the fields S and C. Show that the scalar potential vanishes. Find the auxilliary fields to see that SUSY is generically broken. $(2 \ credits)$
- (b) Find the auxiliary fields for S, T and C and check that SUSY is broken. $(3 \ credits)$
- (c) Calculate the scalar potential. $(2 \ credits)$
- (d) What is the value of the vacuum energy? Are there at directions (where E_{vac} is independent of the vev of a field)? $(4 \ credits)$
- $(2 \ credits)$ (e) What is the gravitino mass?