Exercises 11 28 May 2011 SS 2011

Exercises on Theoretical Particle Physics II

Prof. Dr. H.P. Nilles Dr. C. Lüdeling _

DUE 5.06.2011

11.1 Tensor product of Matrices

For two matrices A and B of dimension $M \times N$ and $P \times Q$, the Kronecker product $A \otimes B$ is a $MP \times NQ$ matrix with elements

$$(A \otimes B)_{im,jn} = A_{ij}B_{mn}.$$

The indices run over im = 11, 12, ..., NQ etc. For example, if A is a 2×2 matrix, the Kronecker product with B is

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{pmatrix} \,.$$

Clearly, it is linear and associative. Check the following properties of the Kronecker product:

(a) Transpose and complex conjugation distribute over the Kronecker product, i.e.

$$(A \otimes B)^T = A^T \otimes B^T, \qquad (A \otimes B)^* = A^* \otimes B^*.$$
(1 credit)

(b) If dimensions match, matrix multiplication factorises:

$$(1 \ credit)$$
 If A and B are square matrices of dimensions $M \times M$ and $N \times N$, we have for

 $(A \otimes B)(C \otimes D) = (AC \otimes BD)$

(c)the trace and determinant

$$\det(A \otimes B) = (\det A)^N \cdot (\det B)^M, \qquad \operatorname{tr}(A \otimes B) = \operatorname{tr} A \operatorname{tr} B.$$

 $(2 \ credits)$

 $(8 \ credits)$

11.2 Gamma Matrices in various Dimensions

We can recursively define a particular representation of the Γ matrices for all dimensions in the following way: First we consider even dimensions. In D = 2, start with

$$\Gamma^0 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad \Gamma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Now assume the Γ matrices in D-2 dimensions to be γ^{μ} . In D dimensions, define

$$\Gamma^{\mu} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \gamma^{\mu}, \qquad \Gamma^{D-2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \mathbb{1}, \qquad \Gamma^{D-1} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \otimes \mathbb{1}.$$

For odd dimensions, D = 2k + 1, we take the 2k-dimensional Γ matrices and add Γ^* (see sheet 9).

 $(4 \ credits)$

- (a) Show that this procedure defines a set of Γ matrices in any dimension. (4 credits)
- (b) Show that, in any dimensions, Γ^0 and all odd Γ^i for $i \ge 3$ are antisymmetric, while Γ^1 and the even Γ^i are symmetric! Conclude that Γ^3 , Γ^5 ,..., Γ^9 are imaginary and the other ones are real. (4 credits)

11.3 Majorana Spinors in various Dimensions

Consider the Majorana condition, i.e. a reality condition on a spinor of the form $\psi^*=B\psi$. This requires

$$B\Sigma^{\mu\nu}B^{-1} = \Sigma^{\mu\nu*}$$
, and $BB^* = 1$.

(a) Consider even dimensions first. Use the Γ matrix representation defined in the previous problem. Let

$$B = \Gamma^3 \Gamma^5 \dots \Gamma^{D-1}, \qquad B' = \Gamma^* B.$$

Show that

$$B\Gamma^{\mu}B^{-1} = -(-)^{\frac{D}{2}}\Gamma^{\mu*}, \qquad B'\Gamma^{\mu}B'^{-1} = (-)^{\frac{D}{2}}\Gamma^{\mu*},$$

so both B and B' satisfy the first condition above. (2 credits)

- (b) For which D do they also satisfy the second one? (3 credits)
- (c) Under which condition is the Majorana condition compatible with a chirality condition $\Gamma^* \psi = \pm \psi$? (2 credits)
- (d) The definitions of B and B' also extend in D + 1 dimensions. Do they both generate consistent Majorana conditions? In which dimensions? (2 credits)

 $(9 \ credits)$