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In this exercise we will continue the study of Lie algebras and Lie groups, which we have
started in the first sheet. For this purpose we start with an explicit example (the Lie alge-
bra of SU(3)) and then we introduce the machinery required to study the representations
of su(N) in a general fashion.

H3.1 The su(3) Algebra 10 points

Consider the Gell-Mann matrices

T 1 =
1

2

0 1 0
1 0 0
0 0 0

 , T 2 =
1

2

0 −i 0
i 0 0
0 0 0

 , T 3 =
1

2

1 0 0
0 −1 0
0 0 0

 , T 4 =
1

2

0 0 1
0 0 0
1 0 0

 ,

T 5 =
1

2

0 0 −i
0 0 0
i 0 0

 , T 6 =
1

2

0 0 0
0 0 1
0 1 0

 , T 7 =
1

2

0 0 0
0 0 −i
0 i 0

 , T 8 =
1

2
√
3

1 0 0
0 1 0
0 0 −2

 .

(a) Show that they serve as a basis for the su(3) algebra. Evaluate the commutators
of these matrices to determine the structure constants fabc. Show that, with the
normalization used here, fabc is totally antisymmetric. Hint: You may wish to check
only a representative sample of the commutators. (4 points)

(b) Why is {T 3, T 8} a good choice for the Cartan subalgebra? Show that the (complex)
basis transformation

T± = T 1 ± iT 2 , U± = T 4 ± iT 5 , V± = T 6 ± iT 7 ,

diagonalizes both f 3ab and f 8ab. (3 points)

(c) Take the eigenvalues of a given element with the Cartan-generators and write them as
two component vectors. Draw these vectors in a coordinate system. Name a physical
example where you know this pattern from? (2 points)
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(d) Use the previous diagram to identify the positive and simple roots and show that they
give you the expected Cartan matrix. 1 points

H3.2 Representations of su(N) 10 points
In this exercise we will now have a closer look at representations of SU(N) groups.

(a) Recall the definition of the adjoint ad a(b) := [a, b].
Show that the adjoint is a representation of the Lie algebra

ad
(
[a, b]

)
= [ad a, ad b] , for a, b ∈ g .

(1 point)

PLEASE NOTE!

♣ The bracket [· , ·] on the left-hand side denotes the abstract Lie-bracket, but on the
right-hand side it denotes the commutator.

♣ The adjoint representation ad of a Lie algebra g on a vector space V is a linear
mapping ad : g → End(V ), where V is equal to the Lie algebra itself, i .e. V = g
This means that when we computed the Dynkin diagram of SU(N), we implicitly
used the adjoint representation of SU(N):

adh(eab) = [h, eab] . (1)

Furthermore, we had the eigenvalue equation

adh(eab) = αeab(h) eab , (2)

which defined the roots αeab .
This eigenvalue equation can now be generalized to non-adjoint representations ρ on
some vector space V . Let ϕi be a basis of V . We denote the representations of the
elements of the Cartan subalgebra h ∈ H by ρ(h) and the representations of the
step operators eα by ρ(eα). Then eq. (2) reads: ρ(h)ϕi = M i(h)ϕi. Since the linear
functions M i act on elements h ∈ H and give (real) numbers, they are elements of
the dual space H∗. They are called weights. The corresponding vectors ϕi are called
weight vectors. Note that roots are the weights of the adjoint representation!
You may have already gotten that simple roots αj span H∗, so it is possible to
reexpress the weights by simple roots M i =

∑
j cijαj, where the coefficients cij are in

general non-integers. A weightsM i is called positive, if the first non-zero coefficients
is positive. We write M i > M j, if M i −M j > 0.
A weight is called the highest weight, denoted by Λ, if Λ > M i ∀M i ̸= Λ

(b) Suppose that ϕi is a weight vector with weight M i. Show that ρ(eα)ϕ
i is a weight

vector with weight M i + α unless ρ(eα)ϕ
i = 0.

Hint Use eqs. (1) and (2) and the fact that ρ is a representation. Thus it makes sense to
think of the ρ(eα) as raising operators and the ρ(e−α) as lowering operators. (1 point)
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(c) Consider now a representation ρ of SU(N). We denote the generators ρ(ta). For
elements of the Cartan subalgebra, we may also write ρ(h). Follow from

[ρ(ta), ρ(tb)] = i fabc ρ(tc) ,

that −ρ(ta)
∗ forms a representation, called the complex conjugate of ρ. We denote it

by ρ. ρ is said to be a real representation if it is equivalent to its complex conjugate.
(1 point)

(d) Show that if M i is a weight in ρ, −M i is a weight in ρ.
Hint: Use the fact that Cartan generators are hermitean (1 point)

Now we are well equipped to construct the representations. For a finite dimensional rep-
resentation we will find a state with highest weight Λ, which is annihilated by all positive
root operators. Then we can get all states by acting with the lowering operators on it. In
order to do this, we present the weights by the Dynkin labels

mi :=
2⟨M,αi⟩
⟨αi, αi⟩

.

where M denotes a weight. The dynkin labels always consist of integer numbers which for
a highest weight state are non-negative. It is easy to see that acting with E−αi

corresponds
to substracting the ith row of the Cartan matrix from the Dynkin label. Now you can
construct all irreducible representations via the following procedure:

♢ start with the Dynkin label m with non-negative entries, representing the highest weight state
♢ if the ith entry of the Dynkin label mi is positive, you can get mi new states by substracting mi

times the ith row of the Cartan matrix
♢ repeat the last step for all new steps, for i = 1 . . . r
♢ at the end you should arrive at the lowest weight state with only non-positive entries in the Dynkin

label.

Lets now get more concrete and turn to an example:

(e) Construct the 5 and the 10 of su(5) with the highest Dynkin labels (1, 0, 0, 0) and
(0, 1, 0, 0). What are the higest Dynkin labels of the 5 and the 10? Also, construct
the adjoint, the 24, from the Dynkin label (1, 0, 0, 1). How can you see that it is real?
(6 points)
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