Exercises on Theoretical Particle Physics II Prof. Dr. H.P. Nilles

DUE 30.6.2014

20. Kaluza-Klein theories in 5 dimensions

(a) For a compactification of gravity from 5 to 4 dimensions we make the general ansatz

$$G_{MN} = \phi^{\beta} \begin{pmatrix} g_{\mu\nu} + \phi A_{\mu}A_{\nu} & \phi A_{\mu} \\ \phi A_{\nu} & \phi \end{pmatrix}, \qquad G^{MN} = \phi^{-\beta} \begin{pmatrix} g^{\mu\nu} & -A^{\mu} \\ -A^{\nu} & \phi^{-1} + A_{\mu}A^{\mu} \end{pmatrix}.$$

The 5 dimensional Einstein Hilbert action is

$$S_5 = -\frac{1}{2\kappa_5^2} \int d^5x \sqrt{-G}R_5, \qquad G = \det G_{MN}.$$

Show that

$$G^{-1} = \phi^{-5\beta} \left(g^{-1}(\phi^{-1} + A_{\mu}A^{\mu}) - \sum_{\mu,\nu} A^{\mu}A^{\nu}g^{-1}g_{\mu\nu} \right), \qquad g = \det g_{\mu\nu}.$$
(3 credits)

(b) Show that the result from part (a) simplifies to

$$G^{-1} = \phi^{-5\beta - 1}g^{-1}.$$

 $(1 \ credit)$

(c) Use your result from part (b) to calculate $\sqrt{-G}$.

 $(1 \ credit)$

(d) We have

$$S_4 = -\frac{1}{2\kappa_4^2} \int d^4x \sqrt{-g} R_4.$$

Use the result from part (c) to show that $\beta = -\frac{1}{3}$. What do you need to know about R_5 and R_4 ? Identify κ_4 .

 $(3 \ credits)$

 $(10 \ credits)$

(e) Show that 5 dimensional general coordinate transformations

$$G_{MN} \to \frac{\partial x^K}{\partial x'^M} \frac{\partial x^L}{\partial x'^N} G_{KL}$$

induce 4 dimensional gauge transformations when reparametrizing the circle coordinate as

$$y \to y + \lambda(x^{\mu}), \qquad x^{\mu} \to x^{\mu}.$$

 $(2 \ credits)$

21. Fermions in higher dimensions

(a) Generalizations of gamma matrices to higher dimensions have to satisfy

$$\{\Gamma^M, \Gamma^N\} = 2\eta^{MN}\mathbb{1}$$

where we use the convention $\eta^{MN} = \text{diag}(-, +, \dots, +), M, N = 0, \dots, D - 1$. Define in addition an analogue to γ^5 in 4 dimensions

$$\Gamma = i^{\alpha} \Gamma^0 \dots \Gamma^{D-1}$$

where $\alpha \in \mathbb{Z}$. Show that Γ anticommutes with Γ^M if D is even and commutes if D is odd.

 $(2 \ credits)$

(b) Show that $\Gamma \propto \mathbb{1}$ if D is odd and determine α by the requirement $\Gamma^2 = \mathbb{1}$.

 $(2 \ credits)$

(c) Assume D is even and show that

Interpret this result.

$$\left[\Gamma,\Sigma^{MN}\right]=0$$

with

$$\Sigma^{MN} = \frac{i}{4} \left[\Gamma^M, \Gamma^N \right]$$

 $(2 \ credits)$

(d) The 5 dimensional action for fermions is

$$S_5 = \int d^5 x \bar{\Psi} \Gamma^M \partial_M \Psi, \qquad \bar{\Psi} = \Psi^{\dagger} \Gamma^0.$$

Compactification on a circle S^1 will not lead to a chiral theory in 4 dimensions. Why? How can you realize chirality in 4 dimensions?

 $(4 \ credits)$

 $(10 \ credits)$