An Introduction to Superstring Theory

Felix Plöger

 $\max\,2,\,2003$

Contents

1	Introduction	2
2	The Action	3
3	Light-Cone Coordinates	5
4	Symmetries	5
5	Equations of motion	7
6	Solutions and Boundary Conditions	8
7	Constraint Equations	9
8	Quantization	12
9	Review	16
10	The Critical Dimension	19
11	The Spectrum	22
12	Summary	26

1 Introduction

problems of **Bosonic String Theory**:

- tachyonic ground state
- no fermions in the spectrum
- → modify the theory

2 The Action

• action of Bosonic String Theory:

$$S = -\frac{1}{4\pi\alpha'} \int d\tau d\sigma \partial_{\alpha} X^{\mu} \partial^{\alpha} X_{\mu}$$
 (1)

with X^{μ} bosonic fields

• now: include fermions and install **Supersymmetry** $\Rightarrow \Psi_A$ two-component spinor, $A \in \{-, +\}$

$$\Psi_A = \left(\begin{array}{c} \Psi_- \\ \Psi_+ \end{array}\right)$$

- second index $\mu = 0, ...d 1$: Ψ^{μ}_{A}
- \Rightarrow vector index
- generalize the action:

$$S = -\frac{1}{4\pi\alpha'} \int d\tau d\sigma \left(\partial_{\alpha} X^{\mu} \partial^{\alpha} X_{\mu} + i \overline{\Psi}^{\mu} \varrho^{\alpha} \partial_{\alpha} \Psi_{\mu} \right)$$
 (2)

with

$$\varrho^0 = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right) \qquad \varrho^1 = \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array} \right)$$

$$\{\varrho^{\alpha},\varrho^{\beta}\} = -2\eta^{\alpha\beta}$$
 (Clifford Algebra)

 $\Rightarrow \Psi^{\mu}$ real Majorana Spinor

• indizes: X^{μ}, Ψ^{μ}

vector index $\mu = 0, ..., d-1$

spinor index $A \in \{-, +\}$

3 Light-Cone Coordinates

- aim: physical degrees of freedom only
- reparametrization invariance:

$$\sigma^{\pm} = \tau \pm \sigma \tag{3}$$

$$\partial_{\pm} = \frac{1}{2} (\partial_{\tau} \pm \partial_{\sigma}) \quad \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix}$$

$$X^{\pm} = \frac{1}{\sqrt{2}}(X^0 \pm X^1) \tag{4}$$

$$\Psi^{\pm} = \frac{1}{\sqrt{2}} (\Psi^0 \pm \Psi^1) \tag{5}$$

$$X^i, \Psi^i, \quad i = 2, ..., d-1$$

4 Symmetries

• use symmetries to reduce degrees of freedom

• reparametrization invariance:

$$(\tau, \sigma) \longrightarrow (\sigma^{-}, \sigma^{+})$$

$$\frac{1}{2\pi\alpha'} \int d\sigma^{+} d\sigma^{-} (\partial_{-}X^{\mu}\partial_{+}X_{\mu} + \frac{i}{2}(\Psi^{\mu}_{+}\partial_{-}\Psi_{+\mu} + \Psi^{\mu}_{-}\partial_{+}\Psi_{-\mu}))$$
(6)

- **Poincaré-invariance:** in 2- and *d*-dimensions (index structure)
- Supersymmetry: invariance under

$$\delta X^{\mu} = i(\epsilon_{+}\Psi^{\mu}_{-} - \epsilon_{-}\Psi^{\mu}_{+}) \tag{7}$$

$$\delta\Psi^{\mu}_{\mp} = \mp 2\epsilon_{\pm}\partial_{\mp}X^{\mu} \tag{8}$$

mixes X^{μ}, Ψ^{μ}

checking:

$$S(X^{\mu}, \Psi^{\mu}) \longrightarrow S(X^{\mu} + \delta X^{\mu}, \Psi^{\mu} + \delta \Psi^{\mu}) = S(X^{\mu}, \Psi^{\mu})$$

(henceforth: closed string only)

• superconformal invariance: $\sigma^{\pm} \longrightarrow \tilde{\sigma}^{\pm}(\sigma^{\pm})$ further: $\epsilon_{-} = \epsilon_{-}(\sigma^{-}), \epsilon_{+} = \epsilon_{+}(\sigma^{+})$ (partially local symmetry)

5 Equations of motion

• variational principle

• bosonic:
$$X^{\mu} \to X^{\mu} + \delta X^{\mu}$$

$$\partial_{+} \partial_{-} X^{\mu} = 0 \tag{9}$$

• fermionic: $\Psi^{\mu} \to \Psi^{\mu} + \delta \Psi^{\mu}$, $\delta \Psi^{\mu} (\tau \in [\tau_0, \tau_1]) = 0$ $\delta S = \frac{i}{4\pi\alpha'} \int d\tau d\sigma (\partial_{\alpha} \overline{\Psi}^{\mu} \varrho^{\alpha} \delta(\Psi_{\mu}))$ $-\frac{i}{4\pi\alpha'} \int d\tau (\left(\overline{\Psi}_{+}^{\mu}, -\overline{\Psi}_{-}^{\mu}\right) \varrho^{1} \left(\frac{\delta \Psi_{-}^{\mu}}{\delta \Psi_{+}^{\mu}}\right))|_{\sigma \in \partial S}$ Thus:

$$\partial_{+}\Psi_{-}^{\mu} = \partial_{-}\Psi_{+}^{\mu} = 0 \tag{10}$$

$$(-\Psi_{+\mu}\delta\Psi_{+}^{\mu} + \Psi_{-\mu}\delta\Psi_{-}^{\mu})|_{\sigma=0}^{\sigma=\pi} = 0.$$
 (11)

• solutions with negative norm $(X^{\pm}, \Psi^{\pm}) \Rightarrow$ negative norm states, called **ghosts** (after quantization)

6 Solutions and Boundary Conditions

• consider $(-\Psi_{+\mu}\delta\Psi^{\mu}_{+} + \Psi_{-\mu}\delta\Psi^{\mu}_{-})|_{\sigma=0}^{\sigma=\pi} = 0$ supersymmetry \Rightarrow independent variation of Ψ_{\pm} \Rightarrow two possible choices:

Ramond-Sector:
$$\Psi^{\mu}_{+}(\tau, \sigma + \pi) = \Psi^{\mu}_{+}(\tau, \sigma)$$

Neveu-Schwarz-Sector:
$$\Psi^{\mu}_{\pm}(\tau, \sigma + \pi) = -\Psi^{\mu}_{\pm}(\tau, \sigma)$$

 \Rightarrow solutions can lie in two different sectors (independent choice for each component of Ψ_A

• mode expansion: (for R-Sector)

$$\Psi^{\mu}_{-} = \sum_{n \in \mathbb{Z}} d_n^{\mu} e^{-2in(\tau - \sigma)} \quad R \tag{12}$$

$$\Psi_{+}^{\mu} = \sum_{n \in \mathbb{Z}} \tilde{d}_{n}^{\mu} e^{-2in(\tau + \sigma)} \quad R \tag{13}$$

(for NS Sector)

$$\Psi^{\mu}_{-} = \sum_{n \in \mathbb{Z} + \frac{1}{2}} b_{n}^{\mu} e^{-2in(\tau - \sigma)} \quad \text{NS}$$

$$\Psi^{\mu}_{+} = \sum_{n=1}^{\infty} \tilde{b}_{n}^{\mu} e^{-2in(\tau + \sigma)} \quad \text{NS}$$
(14)

$$\Psi_{+}^{\mu} = \sum_{n \in \mathbb{Z} + \frac{1}{2}} \tilde{b}_{n}^{\mu} e^{-2in(\tau + \sigma)} \quad \text{NS}$$
 (15)

• for the bosonic coordinates:

$$X_R^{\mu} = \frac{1}{2}x^{\mu} + \frac{1}{2}p^{\mu}\sigma^{-} + \frac{i}{2}\sum_{n\neq 0}\frac{1}{n}\alpha_n^{\mu}e^{-2in\sigma^{-}}$$
 (16)

$$X_L^{\mu} = \frac{1}{2}x^{\mu} + \frac{1}{2}p^{\mu}\sigma^{+} + \frac{i}{2}\sum_{n\neq 0}\frac{1}{n}\tilde{\alpha}_n^{\mu}e^{-2in\sigma^{+}}$$
 (17)

Constraint Equations 7

- ghosts ⇒ problem for probabilistic interpretation of states remove them!
 - \Rightarrow constraints
- Energy-momentum tensor: $T_{\alpha\beta}$ insert a vielbein (due to spinors) e^a_{α} and its superpartner χ_{α}

$$T_{\alpha\beta} = -\frac{2\pi}{e} \frac{\delta S}{\delta e_a^{\beta}} e_{\alpha a} \tag{18}$$

$$T_{\alpha\beta} = 0 \qquad \forall \alpha, \beta$$
 (19)

• Supercurrent: J_{α} apply Noether's method to the supersymmetry transf.

$$[J_{\pm}(\sigma), J_{\pm}(\sigma')]_{P.B.} = \pi \delta(\sigma - \sigma') T_{\pm\pm}(\sigma)$$
$$[J_{+}(\sigma), J_{-}(\sigma')]_{P.B.} = 0$$

thus demand:

$$J_{\alpha} = 0$$

- constraints: $T_{++} = T_{--} = J_{+} = J_{-} = 0$
- superconformal invariance: $\sigma^{\pm} \longrightarrow \tilde{\sigma}^{\pm}(\sigma^{\pm})$, $\epsilon_{-} = \epsilon_{-}(\sigma^{-})$, $\epsilon_{+} = \epsilon_{+}(\sigma^{+})$ \longrightarrow fix X^{+}, Ψ^{+} as in the bosonic case:

$$\Rightarrow \tau \longrightarrow \frac{1}{2} (\tilde{\sigma}^{+}(\sigma^{+}) + \tilde{\sigma}^{-}(\sigma^{-}))$$

$$\Rightarrow \partial_{+} \partial_{-} \tau = 0$$

$$X^{+} = x^{+} + p^{+} \tau \tag{20}$$

choose:

$$\begin{pmatrix} \Psi_- \\ \Psi_+ \end{pmatrix}^{\mu=+} = 0$$
(21)

• constraints explicitly:

$$\begin{split} -\frac{p^{+}}{2}\Psi_{+}^{-} + \Psi_{+}^{i}\partial_{+}X^{i} &= 0 \\ -\frac{p^{+}}{2}\Psi_{-}^{-} + \Psi_{-}^{i}\partial_{-}X^{i} &= 0 \\ -p^{+}\partial_{+}X^{-} + (\partial_{+}X)^{i} - \frac{i}{2}\Psi_{+}^{i}\partial_{+}\Psi_{+}^{i} &= 0 \\ -p^{+}\partial_{-}X^{-} + (\partial_{-}X)^{i} - \frac{i}{2}\Psi_{-}^{i}\partial_{-}\Psi_{-}^{i} &= 0 \end{split}$$

they can be solved:

$$(\Psi_{\pm})^{-} = \frac{2}{p^{+}} \Psi_{\pm}^{i} \partial_{\pm} X^{i} \tag{22}$$

$$\partial_{\pm}X^{-} = \frac{1}{p^{+}}((\partial_{+}X^{i})^{2} + \frac{i}{2}\Psi_{\pm}^{i}\partial_{\pm}\Psi_{\pm}^{i}).$$
 (23)

ullet imposing of constraints \Rightarrow reduces the number of degrees of freedom

Henceforth:

$$X^{i}$$
 $i = 2, ..., d - 1$
 Ψ^{i} $i = 2, ..., d - 1$

8 Quantization

• quantization: regard X^{μ}, Ψ^{μ} as operators and perform the replacement:

$$[,]_{P.B.} \longrightarrow \frac{1}{i} [,] \text{ (bosonic)}$$
 (24)

$$[,]_{P.B.} \longrightarrow \frac{1}{i} \{ , \}$$
 (fermionic) (25)

• for classical solutions (due to def. of Poisson Brackets):

$$[\Psi_{+}^{\mu}(\sigma), \Psi_{+}^{\nu}(\sigma')]_{P.B.} = [\Psi_{-}^{\mu}(\sigma), \Psi_{-}^{\nu}(\sigma')]_{P.B.} = i\pi\eta^{\mu\nu}\delta(\sigma-\sigma')$$
$$[\Psi_{+}^{\mu}(\sigma), \Psi_{-}^{\nu}(\sigma')]_{P.B.} = 0.$$

• quantized version

$$\{\Psi_{+}^{\mu}(\sigma), \Psi_{+}^{\nu}(\sigma')\} = \{\Psi_{-}^{\mu}(\sigma), \Psi_{-}^{\nu}(\sigma')\} = \pi \eta^{\mu\nu} \delta(\sigma - \sigma')$$
(26)
$$\{\Psi_{+}^{\mu}(\sigma), \Psi_{-}^{\nu}(\sigma')\} = 0.$$
(27)

for bosons the same results as in the Bosonic String Theory • for the Fourier-modes: insert the formula for X^{μ}, Ψ^{μ} into the brackets

$$\{b_r^{\mu}, b_s^{\nu}\} = \{\tilde{b}_r^{\mu}, \tilde{b}_s^{\nu}\} = \eta^{\mu\nu}\delta_{r+s,0}$$
 NS (28)

$$\{d_r^{\mu}, d_s^{\nu}\} = \{\tilde{d}_r^{\mu}, \tilde{d}_s^{\nu}\} = \eta^{\mu\nu} \delta_{r+s,0}$$
 R (29)

• reality of Majorana spinors: $(b_r^{\mu})^{\dagger} = b_{-r}^{\mu}$ for r > 0

harmonic oscillator algebra $\{b_r^{\mu\dagger}, b_s^{\nu}\} = \eta^{\mu\nu}\delta_{r,s}$

• second quantization:

 b_r^{μ} lowering operators for r > 0

 b_r^{μ} raising operators for r < 0

- construct states by acting with b_r^{μ} , r < 0 on a vacuum state $|k\rangle$ (second quantization)
- number-operator:

$$N = N^{(a)} + N^{(b)} = \sum_{m=1}^{\infty} \alpha_{-m} \cdot \alpha_m + \sum_{r=\frac{1}{2}}^{\infty} r b_{-r} \cdot b_r$$
 (30)

• in terms of oscillators (for the NS-sector for example):

$$\alpha_{n}^{-} = \frac{1}{p^{+}} \left(\sum_{m=-\infty}^{\infty} : \alpha_{n-m}^{i} \alpha_{m}^{i} : + \sum_{r \in \mathbb{Z} + \frac{1}{2}} r : b_{m-r}^{i} b_{r}^{i} : -2 a_{NS} \delta_{n} \right)$$

$$b_{r}^{-} = \frac{1}{p^{+}} \sum_{s=-\infty}^{\infty} \alpha_{r-s}^{i} b_{s}^{i}$$

(with normal-ordering constant a_{NS})

• formula for the mass-operator:

$$\alpha_n^- = \frac{1}{p^+} \left(\sum_{m=-\infty}^{\infty} : \alpha_{n-m}^i \alpha_m^i : + \sum_{r \in \mathbb{Z} + \frac{1}{2}} r : b_{m-r}^i b_r^i : -2 a_{NS} \delta_n \right)$$
use $p^\mu = 2\alpha_0^\mu$

$$\Rightarrow m^2 = 8(N_{NS} - a_{NS})$$

• zero-modes in the R-Sector:

$$\{d_0^{\mu}, d_0^{\nu}\} = \eta^{\mu\nu}$$
 Clifford Algebra (31)

• general state: pairing left- and right movers (taken each from R- or NS-sector)

9 Review

• action:

$$S = -\frac{1}{4\pi\alpha'} \int d\tau d\sigma \left(\partial_{\alpha} X^{\mu} \partial^{\alpha} X_{\mu} + i \overline{\Psi}^{\mu} \varrho^{\alpha} \partial_{\alpha} \Psi_{\mu} \right)$$
(32)

indizes: two fields: X^{μ}, Ψ^{μ}

vector index $\mu = 0, ..., d-1$ spinor index $A \in \{-, +\}$

• equations of motion:

$$\partial_+ \partial_- X^\mu = 0 \tag{33}$$

$$\partial_+ \Psi_-^{\mu} = \partial_- \Psi_+^{\mu} = 0 \tag{34}$$

• two sectors:

Ramond-Sector: $\Psi^{\mu}_{\pm}(\tau, \sigma + \pi) = \Psi^{\mu}_{\pm}(\tau, \sigma)$

Neveu-Schwarz-Sector: $\Psi^{\mu}_{\pm}(\tau, \sigma + \pi) = -\Psi^{\mu}_{\pm}(\tau, \sigma)$

 \Rightarrow solutions can lie in two different sectors (independent choice for each component of Ψ_A)

• imposing of constraints ⇒ reduces the number of degrees of freedom

Henceforth:

$$X^{i}$$
 $i = 2, ..., d - 1$
 Ψ^{i} $i = 2, ..., d - 1$

• quantization: regard X^{μ}, Ψ^{μ} as operators and perform the replacement:

$$[,]_{P.B.} \longrightarrow \frac{1}{i} [,] \text{ (bosonic)}$$
 (35)

$$[,]_{P.B.} \longrightarrow \frac{1}{i} \{ , \}$$
 (fermionic) (36)

• for the Fourier-modes:

$$\{b_r^{\mu}, b_s^{\nu}\} = \{\tilde{b}_r^{\mu}, \tilde{b}_s^{\nu}\} = \eta^{\mu\nu}\delta_{r+s,0}$$
 NS (37)

$$\{d_r^{\mu}, d_s^{\nu}\} = \{\tilde{d}_r^{\mu}, \tilde{d}_s^{\nu}\} = \eta^{\mu\nu}\delta_{r+s,0}$$
 R (38)

 \Rightarrow can be seen as creation and annihilation operators:

 b_r^{μ} lowering operators for r > 0

 b_r^μ raising operators for r < 0 (for the NS right-moving part)

• construct states by acting with b_r^{μ} , r < 0 on a vacuum state $|k\rangle$ (second quantization)

general state: pairing left- and right movers (taken each from R- or NS-sector)

- groundstates of each sector will determine states to be vectors or spinors:
 - ⇒ oscillators are space-time bosons; won't change the vector/spinor features of the groundstate
- zero-modes:

NS bosonic α_0^{μ}

R bosonic (α_0^{μ}) and fermionic (d_0^{μ})

• mass-operator:

$$m^2 = 8(N_{NS} - a_{NS})$$

10 The Critical Dimension

- interpretation as particles \Leftrightarrow states must be irreducible representations of little group
- consider NS-Sector (only for right movers): no fermionic zero-modes \Rightarrow vacuum $|k\rangle$ is eigenstate of bosonic zero-modes
 - \Rightarrow vacuum is a d-dim. vector
- first excited state: $b_{-\frac{1}{2}}^{i}|k\rangle$ vector under representations of SO(d-2)
 - \Rightarrow massless

$$0 = m^2 = 8(\frac{1}{2} - a_{NS})$$

$$a_{NS} = \frac{1}{2} \tag{39}$$

• demand: ordering in quantum expressions must be symmetric

$$N_{NS} - a_{NS} = \frac{1}{2} \left(\sum_{n = -\infty, n \neq 0}^{\infty} \alpha_{-n}^{i} \alpha_{n}^{i} + \sum_{r \in \mathbb{Z} + \frac{1}{2}} r b_{-r}^{i} b_{r}^{i} \right)$$

combine this with the old result:

$$N_{NS} - a_{NS} = \frac{1}{2} \left(\sum_{n=1}^{\infty} \alpha_{-n}^{i} \alpha_{n}^{i} + \sum_{r=\frac{1}{2}}^{\infty} r b_{-r}^{i} b_{r}^{i} \right)$$

$$+ \frac{1}{2} \left(\sum_{n=1}^{\infty} \alpha_{n}^{i} \alpha_{-n}^{i} - \sum_{r=\frac{1}{2}}^{\infty} r b_{r}^{i} b_{-r}^{i} \right)$$

$$= N_{NS} + \frac{1}{2} \sum_{i=2}^{d-1} \left(\sum_{n=1}^{\infty} n - \sum_{r=\frac{1}{2}}^{\infty} r \right) \eta^{ii} = N_{NS}$$

$$+ \frac{1}{2} (d-2) \left(\sum_{n=1}^{\infty} n - \sum_{r=\frac{1}{2}}^{\infty} r \right)$$

trick: zeta-function regularization

$$\sum_{n=0}^{\infty} n = -\frac{1}{12}$$

$$\sum_{n=0}^{\infty} (n+c) = \zeta(-1,c) = -\frac{1}{2}(6c^2 - 6c + 1)$$

then we find $(c = \frac{1}{2})$

$$\alpha_{NS} = \frac{d-2}{16} \tag{40}$$

• critical dimension:

$$d = 10$$

ullet more rigid calculations (Lorentz Algebra) \Rightarrow gives the same result

Noether-currents for Poincaré-transf.: $x'^{\mu} = a^{\mu}_{\nu}x^{\nu} + b^{\mu}$

 b^{μ} :

$$P^{\mu}_{\alpha} = \frac{1}{\pi} \partial_{\alpha} X^{\mu}$$
$$P^{\mu} := \int_{0}^{\pi} d\sigma P^{\mu}_{\tau}$$

 a^{μ}_{ν} :

$$J_{\alpha}^{\mu\nu} = \frac{1}{\pi} (X^{\mu} \partial_{\alpha} X^{\nu} - X^{\nu} \partial_{\alpha} X^{\mu} + i \overline{\Psi}^{\mu} \varrho_{\alpha} \Psi^{\nu})$$
$$J^{\mu\nu} := \int_{0}^{\pi} d\sigma J_{\tau}^{\mu\nu}$$

 \Rightarrow they satisfy the usual commutation relations for the Lorentz-Algebra, except $[J^{i-}, J^{j-}]$: anomaly-term \Rightarrow vanishes only (for NS) if $a_{NS} = \frac{1}{2}$, d = 10

• string propagates in 10 dimensions

11 The Spectrum

separate discussion of NS/R-sector \Rightarrow GSO-projection to get rid of unwanted states

- **NS** (only for the right movers) vacuum $|k\rangle$ is eigenstate of bosonic zero-modes \Rightarrow states describe bosons
 - for vacuum $|k\rangle$: $m^2 = -4$ for first excited state $b^i_{-\frac{1}{2}}|k\rangle$: $m^2 = 0$ \Rightarrow vector representation of SO(8)for second excited state $b^i_{-\frac{1}{2}}b^j_{-\frac{1}{2}}|k\rangle$: $m^2 = 4$

 \Rightarrow these and all following combine to irred. represent. of SO(9)

• project tachyon out: \Rightarrow def. fermionic number operator F (F = 1 for vacuum)

$$P_{GSO} = \frac{1 + (-1)^F}{2} \cdot \frac{1 + (-1)^{\tilde{F}}}{2} \tag{41}$$

multiply each state with P_{GSO}

 \Rightarrow half of the states are removed, no more tachyon!!

(same procedure for left-movers)

 ${f R}$ • (only right movers) eight fermionic zero-modes d_0^i

$$\{d_0^{\mu}, d_0^{\nu}\} = \eta^{\mu\nu}$$

$$\Rightarrow$$
 $d_0^\mu = \frac{1}{\sqrt{2}}\Gamma^\mu$

show: they form a spinor representation

• Therefore redefine

$$D_1 = d_0^2 + id_0^3 (42)$$

$$D_2 = d_0^4 + id_0^5 (43)$$

$$D_3 = d_0^6 + id_0^7 (44)$$

$$D_4 = d_0^8 + i d_0^9. (45)$$

then

$$\{D_I, D_I^{\dagger}\} = 2 \tag{46}$$

all other anti-commutators vanish

• system of 4 creation and annihilation operators

take a state, which is annihilated by all D_I :

$$D_I | ---- \rangle = 0 \quad \forall I$$

and

$$D_3^{\dagger}|----\rangle = |--+-\rangle$$

$$D_3^{\dagger}|--+-\rangle = D_3^{\dagger}D_3^{\dagger}|----\rangle = 0$$

- system of the D_I , D_I^{\dagger} can be represented in a Hilbert space of dimension $2^4 = 16$
- due to $D_1 = (d_0^2 + id_0^3) = \frac{1}{\sqrt{2}}(\Gamma^2 + i\Gamma^3), ...$ the representation of D_I is given by the representation of Γ^{μ} generator of the representation: $\Sigma^{\mu\nu} = \frac{i}{4}[\Gamma^{\mu}, \Gamma^{\nu}]$ \Rightarrow spinor representation of SO(8) (16-component spinor)
- ullet this method to construct spinor representations can be generalized to SO(2n)
- vacuum is a Majorana-spinor of SO(10) $(\frac{1}{2} \cdot 2^{\frac{10}{2}} = 16 \text{ components})$
- GSO-projection:

$$(-1)^F := 2^4 d_0^2 d_0^3 d_0^4 d_0^5 d_0^6 d_0^7 d_0^8 d_0^9 (-1)^{\tilde{N}}$$

$$(47)$$

with $\tilde{N} = \sum_{n>0} d_{-n}^i d_n^i$ then

$$P_{GSO}^{\pm} := \frac{1 \pm (-1)^F}{2} \tag{48}$$

only even or odd chirality states survive the projection

⇒ Majorana spinor becomes a Majorana-Weyl spinor

- same for left-movers
- \bullet combine right- and left-movers \Rightarrow two possibilities:
 - different sign: type IIA strings
 - same sign: type IIB strings
- ullet tensor right and left movers together \Rightarrow four possibilities:

NSNS, NSR, RNS, RR

- NSNS: bosons
- NSR: lowest state $b_{-\frac{1}{2}}^{i}|k\rangle u_{\alpha}$ \Rightarrow decomposes to 8-dim. representation and 56-dim. representation (dilatino, gravitino)

12 Summary

- generalized the action
- found supersymmetry
- reduced number of free fields (constraints)
- solutions of the equations of motion
- quantization
- critical dimension d = 10
- projected tachyon out of the spectrum
- fermions in the spectrum (spinor-states)!!