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1 Introduction

problems of Bosonic String Theory:
e tachyonic ground state

e no fermions in the spectrum

— modify the theory

2 The Action

e action of Bosonic String Theory:

1
4o

with X* bosonic fields

S =— /deU@aX“(‘?O‘XN



e now: include fermions and install Supersymmetry
= W4 two-component spinor, A € {—,+}

‘I’A:(i)

- second index p=0,..d—1: V)
= vector index

e generalize the action:

1
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0 —i ()
0 _ 1_
=(0) = ()

{0, 0"} = —21*"  (Clifford Algebra)

g —

/ drdo (0, X"0° X, + 10" "0, 0,) (2)

with

= V¥ real Majorana Spinor

e indizes: X#, WH

vector index u=0,...,d — 1

spinor index A € {—, +}
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3 Light-Cone Coordinates

e aim: physical degrees of freedom only

e reparametrization invariance:

ot =140

1 —1 0 0
0: = (0, £0,) (O 1)H<_%

X+ =

U =

XLw i=2...d—1

4 Symmetries

e use symmetries to reduce degrees of freedom



e reparametrization invariance:
(T, 0) - (O'_, 0+)
1

2ol

/ Aot o™ (0. X1 0, X, S(WAO W, V0,0 )
(6)

e Poincaré-invariance: in 2- and d-dimensions (index
structure)

e Supersymmetry: invariance under
OX" = (e U —e W) (7)
VL = F2e,0- X" (8)

mixes X#, WH

checking:
S(XH W) — S(XH 4 §XH UH +oUH) = S(XH, UH)
(henceforth: closed string only)

e superconformal invariance: o0& — 5%(0%)
further: e =¢ (07), e =€ (0o")
(partially local symmetry)



5 Equations of motion

e variational principle

e bosonic: X* — XH 4+ HXH

&ra_X“ — O (9)

e fermionic: W/ — WH 4+ §UH WA (T € |19, 71]) = 0

1

0.5

/ drdo (0, V" 0*6(T,))

Ao

i SR — s
e o o (22 Y
Thus:

(_\Ijﬂtéqji + \IJ—MCS\IJL—L” o—0 = 0. (11)



e solutions with negative norm (X=, U*) = negative norm
states, called ghosts (after quantization)

6 Solutions and Boundary Conditions

e consider (=W, ,0Wh +W_,60")|7=F =0
supersymmetry =- independent variation of W
= two possible choices:

Ramond-Sector: U (r,0+7) =V (7, 0)

Neveu-Schwarz-Sector: VY (7, 0+7) = =V (7, 0)

= solutions can lie in two different sectors (independent
choice for each component of W 4

e mode expansion: (for R-Sector)

Vo= Y die P00 R (12)
nel
\Ij/i — Zdvge—Qin(T-Hf) R (13)

nez



(for NS Sector)

W=y bpe o) NS (14)
n€Z+%

o= ) bhe ) NS (15)
n€Z+%

e for the bosonic coordinates:

1, 1, i1,
Xh = 5:(;“ + ép“a +3 % Eoz‘,fe " (16)
11 T
X = 5:5” + 5)0“5r + 5 % Eozﬁe " (17)
n

7 Constraint Equations

e ghosts = problem for probabilistic interpretation of states
remove them!
= constraints

e Energy-momentum tensor: 7,3
insert a vielbein (due to spinors) e? and its superpartner

Xa
_2m oS

T o=
o & 5eg

Coa (18)



Tws =10 Va, 3 (19)

e Supercurrent: J,
apply Noether's method to the supersymmetry transt.

[Ji(0), Je(o")]pp. = m(0 — 0')Tss(0)
[J (o), J-(0")]pp. =0
thus demand:

Jo =0

e constraints: T,, =T _=J, =J_=0

e superconformal invariance: 0= — 75(o

e-(07),ep =e(0h)) — fix X7, 07

as in the bosonic case:

), e_ =

=7 —> 1((3+(0+) +6 (07)

2
= a+a_7 =0
Xt=z"+p'r (20)

choose:

() e



e constraints explicitly:
+

- i i
—7\Ij+ + \D+8+X — O
P’ P
—pTOLX T+ (0. X) — %wia&@ ~ 0

PO X+ (0.X) — LU W = 0

2
they can be solved:
(Uy)” = %\If;aixi (22)
DX — ]%((8+Xi)2+%\1116’i\11;). (23)

e imposing of constraints = reduces the number of de-
grees of freedom
Henceforth:
Xt i=2,..,d-1
U i=2,...,d—1
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8 Quantization

e quantization: regard X*, W# as operators and per-
form the replacement:

[ }P,B,—>%[ , | (bosonic) (24)

. ]p_B_—>%{ ) (fermionic)  (25)

e for classical solutions (due to def. of Poisson Brackets):
[Vh(0), V(o) ps. = [V (o), V" (o) p.. = imn/"6(0—0)

[V (), W (") p.p. = 0.

e quantized version

{Vi(0), Wi(o')} = {¥i(0), V" (o)} = " d(0 — o)
(26)
{Vi(o), ¥ (o)} =0. (27)

for bosons the same results as in the Bosonic String
Theory

12



e for the Fourier-modes: insert the formula for X*#, W#
into the brackets

(b0} = b0 =n"6s0 NS (28)

ryrs ryYs

{d" "} = {d",d"} ="6,150 R (29)

ry s ry s

e reality of Majorana spinors:  (b*)1 = b", for r > 0

harmonic oscillator algebra  {b#7 b7} = 4,

e second quantization:
bl'  lowering operators for r > 0

bl'  raising operators for r < 0

e construct states by acting with 0¥, » < 0 on a vacuum
state |k) (second quantization)

e number-operator:

N=ND+NO=N"a_,-an+y rb b (30)
m=1 _1
=3
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e in terms of oscillators (for the NS-sector for example):

o0

_ 1
oznzzF Z: nmm+Zr b b —2ayg 0,
m=—00 T€Z+2
T _|_ Z ar S S
p §=—00

(with normal-ordering constant ayg)

e formula for the mass-operator:

o0

oz;:i Z:nmm—l—Zr bl bl —2ans by,

_.I_
p
m=—00 T€Z+2
use p* = 2al

= m2 = 8(NNS — CLNS)

e zcro-modes in the R-Sector:

{dy,d;} =n" Clifford Algebra (31)
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e general state: pairing left- and right movers (taken each
from R~ or NS-sector)
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9 Review

e action:

g__ 1

4ol

/ drdo (0, X"0°X,, + 10" 0" 0,V,,)
(32)

indizes: two fields: X#, w#

vector index u=0,...,d —1
spinor index A € {— +}

e cquations of motion:
0,0_-X"=0 (33)

e two sectors:
Ramond-Sector: V! (7,0 + ) = V(7 0)

Neveu-Schwarz-Sector: V. (1, 0+7) = —V! (7, 0)

= solutions can lie in two different sectors (independent
choice for each component of W 4)
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e imposing of constraints = reduces the number of de-
grees of freedom
Henceforth:
Xt i=2..,d-1

U i=2,...,d—1

e quantization: regard X*, W# as operators and per-
form the replacement:

1

|, e — Z[ , ] (bosonic) (35)
1 o
[, lp — ;{ , } (fermionic) (36)

e for the Fourier-modes:

(b0} = (b0 =n"6s0 NS (37)

rys ryYs

{di,dy ={d!,d} =600 R ()

rys s

= can be seen as creation and annihilation operators:

bl'  lowering operators for r > 0
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bl! raising operators for r < (

(for the NS right-moving part)

construct states by acting with ¥, r < 0 on a vacuum
state |k) (second quantization)

general state: pairing left- and right movers (taken each
from R- or NS-sector)

groundstates of each sector will determine states to be
vectors or spinors:

= oscillators are space-time bosons; won‘t change the
vector /spinor features of the groundstate

zero-modes:

NS bosonic a/

R bosonic (afy) and fermionic (dj)

mass-operator:

m2 = S(NNS — CLNS)
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10 The Critical Dimension

e interpretation as particles < states must be irreducible
representations of little group

e consider NS-Sector (only for right movers):
no fermionic zero-modes = vacuum |k) is eigenstate of
bosonic zero-modes
= vacuum is a d-dim. vector

o first excited state: b' k)
~3

vector under representations of SO(d — 2)

=> massless
5 1
0=m :8(5—@\[5)

DO | —

aNs = = (39)

e demand: ordering in quantum expressions must be sym-

metric
1 (0@}
Nys —ans = 3 g ol + E rb’ b
n=—00,n#0 reZ—k%
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combine this with the old result:

(0. ¢]

1 o .
Nyg —ang = 3 Z al o) + Z rb’ b,
n=1 r:%

—|—% Y a, o, — f: rblb’
n=1 r:%
1d—l 00 00
:NNS‘|‘§Z ZH—ZT n" = Nys
i=2 \ n=1 =1
+—(d — 2) Zn—Zr
n=1 r:%

i(n +c)=((—1,¢) = —%(602 —6c+1)

n=0

then we find (¢ = 3)

d— 2
e 40
ans = (40)
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e critical dimension:

e more rigid calculations (Lorentz Algebra) = gives the
same result

Noether-currents for Poincaré-transf.: x'* = a'z” + b

bt
1
P!l = —0,X"
T

Pt ::/ do P!
0
1

JW = (X109, X" — X0 X 4 10" 0, UY)

o
JH ::/ do JE”
0

= they satisfy the usual commutation relations for the
Lorentz-Algebra, except [J'~, J/~]: anomaly-term
= vanishes only (for NS) if ays =3, d =10

e string propagates in 10 dimensions
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11 The Spectrum

separate discussion of NS/R-sector
= GSO-projection to get rid of unwanted states

NS e (only for the right movers)
vacuum |k) is eigenstate of bosonic zero-modes
= states describe bosons

e for vacuum |k): m*= —4
for first excited state b' ||k): m? =0
—3

= vector representation of SO(8)

for second excited state b’ b’ | |k): m? =4
~3 3

= these and all following combine to irred. repre-

sent. of SO(9)

e project tachyon out:
= def. fermionic number operator F' (F =1 for
vacuum)

L+ (=DF 14 (=1)F
2 2
multiply each state with Pgso

PGSO = (41)

= half of the states are removed, no more tachyon!!
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(same procedure for left-movers)

R e (only right movers) eight fermionic zero-modes d},
{dy, do} =0

= dy = %F”
show: they form a spinor representation

e Therefore redefine

D, = di+id; (42)
Dy = dj+id] (43)
Dy = df+id] (44)
Dy = dy+idy. (45)

then
{Dy, DI} =2 (46)

all other anti-commutators vanish

e system of 4 creation and annihilation operators

take a state, which is annihilated by all Dy:
Dy ————=)=0 VI

and
Dj| - ==y =|——+-)



D~ —+—) = DD} - — — =) =0

e system of the Dy, D} can be represented in a Hilbert
space of dimension 2* = 16

e due to Dy = (d3 + id3) = %(FQ + %), ...
the representation of Dy is given by the representa-
tion of I'*

generator of the representation: X = [, T"]

= spinor representation of SO(8) (16-component
spinor)

e this method to construct spinor representations can
be generalized to SO(2n)

e vacuum is a Majorana-spinor of SO(10)
(3 - 2% = 16 components)

e GSO-projection:

(=1)" = 2'dgdodydydidodady(—1)"  (47)

with N =32 d",di
then

(48)



only even or odd chirality states survive the projec-
tion
= Majorana spinor becomes a Majorana-Weyl spinor

e same for left-movers

e combine right- and left-movers =- two possibilities:
- different sign: type IIA strings
- same sign: type IIB strings

e tensor right and left movers together = four possibili-
ties:

NSNS, NSR, RNS, RR
e NSNS: bosons

o NSR: lowest state b* ; |k)u,
~3

= decomposes to 8-dim. representation and 56-dim.
representation
(dilatino, gravitino)
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12 Summary

e generalized the action

e found supersymmetry

e reduced number of free fields (constraints)
e solutions of the equations of motion

e (uantization

e critical dimension d = 10

e projected tachyon out of the spectrum

e fermions in the spectrum
(spinor-states) !!
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