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1 Introduction

In spite of all its beautiful features the Bosonic String Theory left us with some
problems like the absence of fermions and the tachyon in the spectrum. Because
particles can be devided into bosons and fermions and we want to have a theory
which describes them all we must change the action so that there are also fermions
in the spectrum.

Fermions obey anticommutation relations so the most obvious step will be to
introduce anticommuting coordinates ψµ into the action, fermionic partners for
the bosonic coordinates Xµ which are already there.

The tachyon in the Bosonic String Theory, a state with a negative mass square
(m2 < 0), is caused by the normal ordering constant one had to introduce. It is
at least an alarming fact and a hint that the vacuum is incorrectly identified. If
the action is supersymmetric, i.e. invariant under a transformation which mixes
bosonic and fermionic coordinates, there is good hope that the tachyon will be
eliminated from the spectrum. One has to be carefully in distinguishing between
world-sheet- and space-time-supersymmetry. In this article we discuss only two-
dimensional world-sheet supersymmetry.

In the Bosonic String Theory it was found that at the quantum level the
theory makes sense only in 26 dimensions. Similarly in the Superstring Theory
we will find the critical dimension to be 10.
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2 The Action

In this section we search for a suitable action that determines the motion of the
string, the one dimensional object in a d dimensional space-time (called target

space), for which we built our theory. As an action for higher dimensional objects
one chooses the generalization of the point particle action which is the length of
its world-line. Thus for the string (1-dim.) we take the surface that it sweeps out
in the target space. This 2-dimensional world-sheet of the string is parametrized
by the two parameters τ, σ, where τ ∈ [τ0, τ1] and σ ∈ [0, 2π] for the closed,
σ ∈ [0, π] for the open string. In the Bosonic String Theory the action was found
to be

S = − 1

4πα′

∫

dτdσ∂αX
µ∂αXµ,

where α ∈ {0, 1}, ηαβ =

(

−1 0
0 1

)

and the Xµ(τ, σ) are free bosonic fields.

One can show that this form of the action is equivalent to the two-dimensional
volume of the worldsheet. The bosonic string action thus is the action of a
two-dimensional free field theory. To include fermions into the theory we now
add a second term which is built of fermion fields Ψ. Because we want to have
supersymmetry (invariance under a transformation that mixes the bosonic and
the fermionic coordinates) as a symmetry of the action, we must choose the Ψ as
superpartners of the Xµ. For this reason they have to be two-component spinors
ΨA(τ, σ), A ∈ {−,+}, i.e.

Ψ =

(

Ψ−
Ψ+

)

There are surprisingly few choices that lead to interesting theories, one that
does is to choose them to have a second index µ which labels the target space
coordinates: Ψµ

A, µ ∈ {0, ..., d − 1}. But this µ is a vector index, meaning
that instead of the Ψµ

A being two-component spinors they transform in the vector
representation of the target space Lorentz group SO(d − 1, 1). We finally take
the action to be:

S = − 1

4πα′

∫

dτdσ
(

∂αX
µ∂αXµ + iΨ

µ
%α∂αΨµ

)

. (1)

Here the %α are chosen to be

%0 =

(

0 −i
i 0

)

%1 =

(

0 i
i 0

)

, (2)

thus they are two-dimensional Dirac-matrices (two-dimensional Dirac-matrices
are in general denoted by %, four-dimensional by γ and d-dimensional by Γ)
and it can easily be verified by matrix multiplication that they satisfy the two-
dimensional Clifford-Algebra:

{%α, %β} = −2ηαβ. (3)
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Because the %α are purely imaginary the Dirac-operator i%α∂α is real and it makes
sense to choose the two-component spinor ΨA real, as a Majorana-spinor. Due
to the reality of the spinor components Ψ = Ψt%0 = i(Ψ+,−Ψ−).
Thus we have build an action including d bosonic fields Xµ and d fermionic fields
Ψµ

A. The reader should not be disturbed by the fact that the Ψµ
A transform as

a vector of SO(d − 1, 1), the Lorentz group in d dimensions. Actually there
is no contradiction to the Spin-Statistics Theorem. We are considering a two-
dimensional field theory and the fermion fields Ψµ

A transform as spinors under
transformations of the 2-dim worldsheet as the theorem demands. It says nothing
about the features under transformations of the target space, which can be seen
as inner symmetries from the two-dimensional point of view.

2.1 Light-Cone Gauge

In the previous chapter we found that the superstring-action showed invariance
under reparametrizations of the world-sheet. This feature now will be used to go
to light-cone gauge. The reason for this gauge will become obvious very soon: In
light-cone gauge it will be possible to get rid of all unphysical degrees of freedom
and keep only the physical ones. For that we perform the transformation

(

τ
σ

)

−→
(

1 −1
1 1

)(

τ
σ

)

(4)

and call the new coordinates σ± := τ ± σ light-cone coordinates. The derivatives
transform according to

∂± =
1

2
(∂τ ± ∂σ).

Therefore the metric in light-cone coordinates is calculated from the worldsheet

metric (hαβ)αβ =

(

−1 0
0 1

)

to be:

η++ =
∂σ+

∂σµ

∂σ+

∂σν
ηµν = −∂σ

+

∂σ0

∂σ+

∂σ0
+
∂σ+

∂σ1

∂σ+

∂σ1
= −1 + 1 = 0

and in the same way

η−− = 0 η−+ = η+− = −1

2
.

The light-cone indizes +,− are raised and lowered with that metric.
Now the fields Xµ,Ψµ are redefined according to

X± :=
1√
2
(X0 ±X1) Ψ± :=

1√
2
(Ψ0 ±Ψ1), (5)

and the transversal fields X i,Ψi i = 2, ..., d− 2. The reason of this will be seen
soon.
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2.2 Symmetries

We will now use the symmetries of the action to reduce the degrees of freedom,
to delete all fields which depend in a trivial way on the world-sheet parameters
or can be expressed by other fields.

First there is a reparametrization invariance, i.e. the action (1) is invariant
under τ → τ ′, σ → σ′. In the following we will see that for reducing the number
of free fields a very useful gauge is the choice of light-cone coordinates σ± = τ±σ.

With the knowledge of the previous chapter we are prepared to transform
the action into light-cone coordinates. By using that the determinant of the
transformation matrix, defined in (4) is given by det(A) = 2 the calculation runs
as follows

S = − 1

4πα′

∫

dτdσ (∂αX
µ∂αXµ + iΨ

µ
%α∂αΨµ)

=
1

4πα′

∫

dτdσ (∂τX
µ∂τXµ − ∂σX

µ∂σXµ − iΨ
µ
(%0∂0 + %1∂1)Ψµ)

=
1

2πα′

∫

dτdσ (2 · 1
4
(∂τ − ∂σ)X

µ(∂τ + ∂σ)Xµ

−2 · i
2
· 1
2

(

Ψµ
+, −Ψµ

−
)

(

(∂τ − ∂σ)δΨ+µ

−(∂τ + ∂σ)δΨ−µ

)

=
1

2πα′

∫

dσ+dσ−(∂−X
µ∂+Xµ +

i

2
(Ψµ

+∂−Ψ+µ +Ψµ
−∂+Ψ−µ)).

First we consider the following two symmetries:

Poincaré-invariance: The Poincaré-invariance in 2 - and d dimensions of the
action is obvious from the index structure of the appearing terms (scalar
products only).

Supersymmetry: The action is also invariant under the following two-dimensional
worldsheet supersymmetry, a transformation which mixes the bosonic and
the fermionic degrees of freedom:

δXµ = i(ε+Ψ
µ
− − ε−Ψ

µ
+) (6)

δΨµ = −i%α∂αXµε, (7)

where ε is a two-component non-chiral Majorana-spinor with infinitesimal
components. In components the second condition reads (by using the ex-
plicit form of the Dirac-matrices)

δΨµ
− = −2ε+∂−Xµ (8)

δΨµ
+ = 2ε−∂+X

µ. (9)
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For checking the invariance under this supersymmetry we use the anticommuta-
tion relation for the spinor components ε+Ψ− = −Ψ−ε+. We first calculate the
additional terms (only those which are linear in ε because we are considering an
infinitesimal transformation) which arrive after applying Xµ → Xµ + δXµ of the
bosonic term (we just write the integrand but it is naturally to be understood
that we consider S(Xµ,Ψµ)→ S(Xµ + δXµ,Ψµ + δΨµ):

∂−(X
µ + δXµ)∂+(Xµ + δXµ) = ∂−X

µ∂+Xµ + ∂−X
µ∂+(δXµ) + ∂−(δX

µ)∂+Xµ

= ∂−X
µ∂+Xµ + i∂−X

µ∂+(ε+Ψ−µ − ε−Ψ+µ) + ∂−(ε+Ψ−µ − ε−Ψ+µ)∂+X
µ

= ∂−X
µ∂+Xµ+i(ε+(∂−X

µ∂+Ψ−µ+∂−Ψ
µ
−∂+X

µ)−ε−(∂−Xµ∂+Ψ+µ+∂−Ψ
µ
+∂+Xµ)).

Then we perform the transformation Ψµ → Ψµ + δΨµ to the fermionic term

i

2
((Ψµ

+ + δΨµ
+)∂−(Ψ+µ + δΨ+µ) + (Ψµ

− + δΨµ
−)∂+(Ψ−µ + δΨ−µ)) =

i

2
(Ψµ

+∂−Ψ+µ+Ψµ
−∂+Ψ−µ+δΨ

µ
+∂−Ψ+µ+Ψµ

+∂−(δΨ+µ)+δΨ
µ
−∂+Ψ−µ+Ψµ

−∂+(δΨ−µ))

=
i

2
(Ψµ

+∂−Ψ+µ +Ψµ
−∂+Ψ−µ) + i(ε−∂+X

µ∂−Ψ+µ +Ψµ
+∂−(ε−∂+Xµ))

−ε+∂−Xµ∂+Ψ−µ −Ψµ
−∂+(ε+∂−Xµ))

=
i

2
(Ψµ

+∂−Ψ+µ +Ψµ
−∂+Ψ−µ) + i(−ε+(∂−Xµ∂+Ψ−µ +Ψµ

−∂+∂−Xµ)+

ε−(∂+X
µ∂−Ψ+µ −Ψµ

+∂−∂+Xµ))

and obviously the first term of the bosonic part cancels with the first term of
the fermionic and the fourth of the bosonic with the third of the fermionic part.
Now we integrate the two remaining terms of the fermionic part by parts (they
are actually still written in an integral although this is not obvious in the above
formula). This is exemplarily done for the first one(it is first transformed to
(τ, σ), in order to discuss the boundary terms) :

2 i

∫

dτ dσΨµ
−(∂τ − ∂σ)(∂τ + ∂σ)Xµ = 2 i

∫

dσ(Ψµ
−(∂τ + ∂σ)Xµ)|τ1τ=τ0

−2 i
∫

dτ(Ψµ
−(∂τ + ∂σ)Xµ)|2πσ=0 − i

∫

dσ+dσ−∂−Ψ
µ
−∂+Xµ

Both boundary terms vanish, the first because of the chosen boundary conditions
and the last cancels with the second term of the bosonic part. In analogy one can
show that also the last remaining term is cancelled. Thus we have showed that
under the supersymmetry transformation δS = 0, that it really is a symmetry
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of our action. One can further show that the action is still invariant if the
transformation parameter ε is taken of the form

ε− = ε−(σ
−) ε+ = ε+(σ

+)

what defines partially local symmetries.

3 Equations of Motion

The equations of motion of the Superstring are derived from the action by a
variational principle. By performing the variation Xµ → Xµ+ δXµ with the
boundary conditions δXµ(τ=τ0) = δXµ(τ=τ1) = 0 and

• δXµ(σ ∈ {0, π}) arbitrarily chosen, but X ′µ = 0 for open strings (Neumann

boundary conditions)

• δXµ(σ + π) = δXµ(σ) for closed strings (Dirac boundary conditions)

The calculation yields as in the bosonic case (see Appendix A) the equations
of motion:

∂+∂−X
µ = 0 (10)

with the corresponding boundary terms in each case.
The variation of the fermionic part of the action is slightly more difficult. By

performing the variation Ψµ→Ψµ + δΨµ with the boundary conditions Ψµ(τ ∈
{τ0, τ1}) = 0 the calculation is the following:

δS = − i

4πα′

∫

dτdσ(Ψ
µ
%αδ(∂αΨµ))

=
i

4πα′

∫

dτdσ(∂αΨ
µ
%αδ(Ψµ))−

i

4πα′

∫

dτ(
(

Ψµ
+, −Ψµ

−
)

%1

(

δΨµ
−

δΨµ
+

)

)|σ∈∂S

Because we are considering closed strings only σ ∈ [0, π] and the boundary
term becomes (−Ψµ

+δΨ+µ+Ψµ
−δΨ−µ)|πσ=0. The equation of motion for the fermion

fields ∂α(Ψµ)%α = 0 is the Dirac conjugate of a massless two-dimensional Dirac
equation

%α∂αΨ
µ = 0. (11)

With the special matrix representation of the %α in mind one finds the equivalent
form of the equations (∂τ + ∂σ)Ψ

µ
− = 0, (∂σ − ∂τ )Ψ

µ
+ = 0 and finally

∂+Ψ
µ
− = ∂−Ψ

µ
+ = 0. (12)

which are supplemented by the boundary conditions

(−Ψ+µδΨ
µ
+ +Ψ−µδΨ

µ
−)|σ=π

σ=0 = 0. (13)
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which will be discussed shortly.
Thus Ψµ

− and ∂−X
µ are both functions of σ− only, Ψµ

+, ∂+X
µ of σ+, a fact

that makes it more transparent why the action is invariant under supersymmetry
transformations, which mixes Ψµ

− with ∂−X
µ and Ψµ

+ with ∂+X
µ. The equations

of motion will have solutions of negative norm, due to the metric-components h01

and h10 a fact that will directly lead to negative norm states after quantization.

3.1 Solutions and Boundary Conditions

Now we call our attention to the boundary conditions (−Ψ+µδΨ
µ
++Ψ−µδΨ

µ
−)|πσ=0 =

0 which we received while varying the action. For closed strings the variation of
Ψµ

+ has to be taken independently of the one of Ψµ
−, because we do not want the

boundary conditions to break part of the supersymmetry δΨ− = −2ε+∂−Xµ and
δΨ+ = 2ε−∂+X

µ, with ε± independent of each other. It is obvious that there are
two possible choices of boundary conditions, either periodicity or anti-periodicity
of each of the two spinor components under shifts of σ by π.1 The possibility for
the two choices defines two sectors in which the solutions can be:

• The Ramond Sector: Ψµ
±(τ, σ + π) = Ψµ

±(τ, σ)

• The Neveu-Schwarz Sector: Ψµ
±(τ, σ + π) = −Ψµ

±(τ, σ)

The general solution of the equations of motion can be written in terms of the
following mode expansion, for the Ramond Sector(R-sector):

Ψµ
− =

∑

n∈Z

dµne
−2in(τ−σ) (14)

Ψµ
+ =

∑

n∈Z

d̃µne
−2in(τ+σ) (15)

and for the Neveu-Schwarz Sector(NS-sector):

Ψµ
− =

∑

n∈Z+ 1

2

bµne
−2in(τ−σ) (16)

Ψµ
+ =

∑

n∈Z+ 1

2

b̃µne
−2in(τ+σ), (17)

where the sum runs over half-integer numbers (...,− 1
2
, 1

2
, 3

2
, ...) in order to satisfy

the appropriate boundary conditions.
The formula for theXµ is the same as in the Bosonic String Theory (see Appendix
A).

1From here on we will choose σmax = π, although we are considering closed strings.
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3.2 Constraint Equations

The above mentioned negative norm states (called ghosts) will be a problem for
the probabilistic interpretation of the states and therefore we must try to remove
them. This can be done in light-cone gauge if we use certain constraint equations,
which reduce the number of degrees of freedom. The first demand is, in analogy
to the bosonic case that the equation of motion for the metric holds. Thus
the energy-momentum tensor must vanish. But to calculate the Euler-Lagrange
equations for the metric, we must take care of the spinor term. It is necessary to
insert a vielbein eaα which here is a zweibein and its superpartner, the gravitino
χα. Then one can generalize our action to a form (still supersymmetric) that can
be varied due to the zweibein and gives the energy-momentum tensor:

Tαβ = −2π

e

δS

δeβa
eαa. (18)

We skip this calculation for the sake of briefness and just present the components
of the (two-dimensional) energy-momentum tensor in light-cone gauge:

T++ = ∂+X
µ∂+Xµ +

i

2
Ψµ

+∂+Ψµ+ (19)

T−− = ∂−X
µ∂−X− +

i

2
Ψµ
−∂−ψµ− (20)

T+− = 0 (21)

T−+ = 0. (22)

Hence it is easily to be seen that the trace of the energy-momentum tensor
(hαβTαβ) vanishes:

hαβTαβ = −1

2
T+− −

1

2
T−+ = 0

In the Bosonic String Theory the two coordinates X± were eliminated by im-
posing T++ = T−− = 0 as constraint equations on the solutions of the equations
of motion (see Appendix A). This is the same in the Superstring Theory but
here also the first two components of Ψµ have negative norm and must be re-
moved. Therefore we need more constraint equations and we consider the Noether
supercurrents Jα which are yielded by applying Noether‘s method to the super-
symmetry transformation:

J+ = Ψµ
+∂+Xµ (23)

J− = Ψµ
−∂−Xµ. (24)

The components of the energy-momentum tensor and the supercurrent satisfy
the algebra:

{J±(σ), J±(σ′)}P.B. = πδ(σ − σ′)T±±(σ) {J+(σ), J−(σ
′)} = 0. (25)
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Therefore it does not seem consistent to set only Tαβ = 0 and we demand for all
Xµ,Ψµ

A the constraint equations

T++ = T−− = J+ = J− = 0. (26)

It is to be mentioned that the supercurrent can also be derived from the above
mentioned action by varying it with respect to the gravitino χα.

The above mentioned reparametrization invariance is not yet completely fixed
(by going to light-cone coordinates). Conformal coordinate transformations σ±→
σ̃±(σ±) are still allowed. Therefore we take the choice τ → 1

2
(σ̃+(σ+) + σ̃−(σ−)

and it is evident that
∂+∂−τ = 0. (27)

Because the equations of motion for the bosonical degrees of freedom are the
same as in the Bosonic String Theory (see Appendix A), explicitly ∂+∂−X

µ = 0,
they meet the same equation as τ and therefore we can choose X+ ∼ τ . We
decide to take the +-component because then the constraint equations can be
solved, otherwise a squareroot will arise as a problem. Thus the first component
of Xµ is fixed:

X+ = x+ + p+τ (28)

with x+, p+ constant numbers. In addition to the fixing of X+ we also choose
(

Ψ−
Ψ+

)µ=+

= 0 (29)

what will turn out to be a good choice because it enables us to solve the con-
straints, as described in the following.

Now we can use the constraint equations to solve X− and Ψ− in terms of the
transversal coordinates X i and Ψi, (i = 2, ..., d− 1). We write them explicitly:

−p
+

2
Ψ−+ +Ψi

+∂+X
i = 0

−p
+

2
Ψ−− +Ψi

−∂−X
i = 0

−p+∂+X
− + (∂+X

i)2 − i

2
Ψi

+∂+Ψ
i
+ = 0

−p+∂−X
− + (∂−X

i)2 − i

2
Ψi
−∂−Ψ

i
− = 0

and find

(Ψ±)
− =

2

p+
Ψi
±∂±X

i (30)

∂±X
− =

1

p+
((∂±X

i)2 +
i

2
Ψi
±∂±Ψ

i
±). (31)

Hence the imposing of the constraints reduced the number of physical degrees of
freedom and in the end we are left with only d − 2 bosonic and d − 2 fermion
fields.
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4 Quantization of the Supersymmetric String

Up to this point we treated the Superstring as a classical theory but now it is time
to quantize it. For the quantization process we calculate the Poisson Brackets of
the classical general coordinates and their canonically conjugated momenta and
then perform the replacement

[ , ]P.B. −→
1

i
[ , ] (32)

for the bosonic and

[ , ]P.B. −→
1

i
{ , } (33)

for the fermionic coordinates. The fields Xµ,Ψµ will be seen as operators and
we will find that they can be interpreted as creation and annihilation operators.
Thus we will achieve a second quantization where all the states of the spectrum
can be constructed by acting with them on a vacuum state.

For the bosonic fields the results are the same as in the Bosonic String Theory
because the corresponding part of the action is not changed.

But for the fermionic coordinates the situation is a bit more complicated
because there are certain constraints, called second class constraints. The classical
conjugated momenta are given by

Πµ
A :=

∂L

∂(∂τΨAµ)
= − i

4πα′
Ψµ

A. (34)

From this follows the above mentioned second class constraint Φµ
A = Πµ

A +
i

4πα′
Ψµ

A = 0, second class because [Φµ
A(τ, σ),Φ

ν
B(τ, σ

′)]P.B. = − i
2πα′

δ(σ−σ′)δABη
µν .

Therefore the Poisson Brackets of the classical solutions and their conjugated mo-
menta have to be replaced by Dirac Brackets (see Appendix B) and the calculation
yields:

[Ψµ
+(σ),Ψ

ν
+(σ

′)]D.B. = [Ψµ
−(σ),Ψ

ν
−(σ

′)]D.B. = iπηµνδ(σ − σ′) (35)

[Ψµ
+(σ),Ψ

ν
−(σ

′)]D.B. = 0. (36)

Now all we have to do to quantize the string is to regard the modes α, b, d
as operators and replace the Dirac Brackets by anticommutators [ , ]D.B. =
1
i
{ , }. So we find the anticommutation relations

{Ψµ
+(σ),Ψ

ν
+(σ

′)} = {Ψµ
−(σ),Ψ

ν
−(σ

′)} = πηµνδ(σ − σ′) (37)

{Ψµ
+(σ),Ψ

ν
−(σ

′)} = 0. (38)

By inserting the formula for Ψ± we find the anticommutators for the Fourier
coefficients

πηµνδ(σ − σ′) = {Ψµ
+(σ),Ψ

ν
+(σ

′)} = {
∑

m∈Z

d̃µme
−2imσ+

,
∑

n∈Z

d̃µne
−2inσ+}
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=
∑

n,m∈Z

{d̃µm, d̃νm}e−2i(mσ++nσ+).

By using δ(σ) = 1
π

∑∞
k=−∞ e

2ikσ for the δ-function we get

∑

n∈Z

(

ηµνe2in(σ+−σ′+) −
∑

m∈Z

{d̃µm, d̃νm}e−2in(σ′++m
n
σ+)

)

= 0

which is only satisfied if
{d̃µm, d̃νm} = ηµνδn+m,0.

In analogy we calculate all other commutators:

{bµr , bνs} = {b̃µr , b̃νs} = ηµνδr+s,0 NS (39)

{dµr , dνs} = {d̃µr , d̃νs} = ηµνδr+s,0 R (40)

otherwise the above relations won‘t be true. From the reality of the Majorana
spinors the condition (bµr )

† = bµ−r arises for r > 0 and the same for the d ‘s.
Then the operators meets the usual harmonic oszillator anticommutation rela-
tions {bµ †r , bνs} = ηµνδr,s and the negative frequency modes can be seen as raising
operators, the positive frequency modes as lowering operators. But what about
zero-Fourier index? We will discuss this topic in the next section. For this reason
we can construct each state by acting with raising operators on a vacuum state
(second quantization). The vacuum (of the right-moving NS-sector for example)
is defined by

αµ
m|k〉 = bµr |k〉 = 0 ∀α, b > 0 (41)

A general state then is the tensor product of the right- and left-moving modes.
The number operator is given by the formula

N = N (a) +N (b) =
∞
∑

m=1

α−m · αm +
∞
∑

r= 1

2

rb−r · br (42)

where the a/b stands for the bosonic/fermionic (in the NS-sector) part. The
number operator is quantized in half integer steps.

Because X−,Ψ− are expressed in terms of the transverse coordinates (light-
cone gauge), the α−m, b

−
r can be expressed in terms of the αi

m, b
i
r. They they read

(for the NS-sector for example):

α−n =
1

p+





∞
∑

m=−∞
: αi

n−mα
i
m : +

∑

r∈Z+ 1

2

r : bim−rb
i
r : −2 aNS δn



 (43)

b−r =
1

p+

∞
∑

s=−∞
αi
r−sb

i
s (44)
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where normal ordering is introduced in order to avoid infinities. The pµ are given
in terms of the zero modes (pµ = 2αµ

0 ) and thus the formula of α−m becomes (in
the NS-sector)

p+α−0 = 2
∑

m>0

αi
−mα

i
m + (αi

0)
2 + 2

∑

r= 1

2

rbirb
i
r − 2 aNS

1

2
p+p− =

1

4
(pi)2 = 2(N − aNS).

Now we define the mass-operator as usual

m2 := −pµpµ = 2p+p− − pipi = 8(NNS − aNS). (45)

aNS is a normal ordering constant which we have mentioned already. For the
R-sector an analogous formula can be derived (just replace NS by R).

In the R-sector the zero modes form a target space Clifford Algebra

{dµ0 , dν0} = ηµν . (46)

Therefore after the definition Γµ :=
√
2dµ0 the Γµ satisfy the usual Clifford Algebra

{Γµ,Γν} = 2ηµν .
By pairing the left and right movers (solutions corresponding to σ+, σ−) to-

gether it becomes obvious that the solutions can lie in either one of the four

sectors: NSNS, NSR, RNS, RR.

4.1 The Critical Dimension

To interprete the states as particles they must be elements of the representa-
tion space of an irreducible representation of the little group of the target space
Lorentz group SO(d− 1, 1). We just consider the NS-sector and show that there
arises a condition for the dimension of the target space (the argumentation for
the R-sector is the same and leads to the same result).
The first excited state is

bi− 1

2

b̃j− 1

2

|k〉.

Its target space index structure (i runs from 1, ..., d − 1) shows that it must be
a vector under representations of SO(d − 2). SO(d − 2) is the little group of
SO(d−1, 1) for massless particles, hence the first excited state must be massless:

0 = m2 = 8(NNS − aNS) = 8(
1

2
− aNS).

Thus

aNS =
1

2
. (47)
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Now we demand that naturally the ordering in quantum expressions would be
symmetric and write for the number operator, instead of of the above given
formula

NNS − aNS =
1

2





∞
∑

n=−∞,n6=0

αi
−nα

i
n +

∑

r∈Z+ 1

2

rbi−rb
i
r



 .

By comparing this with the old result

NNS − aNS =





∞
∑

n=1

αi
−nα

i
n +

∞
∑

r= 1

2

rbi−rb
i
r





=
1

2





∞
∑

n=1

αi
−nα

i
n +

∞
∑

r= 1

2

rbi−rb
i
r



+
1

2





∞
∑

n=1

αi
nα

i
−n −

∞
∑

r= 1

2

rbirb
i
−r





= NNS +
1

2

d−1
∑

i=2





∞
∑

n=1

n−
∞
∑

r= 1

2

r



 ηii = NNS +
1

2
(d− 2)





∞
∑

n=1

n−
∞
∑

r= 1

2

r



 ,

and by using a tricky procedure, namely
∑∞

n=0 n = − 1
12

(called zeta-function regularization)
we can assign a simple number to the infinite sum

αNS = −d− 2

2

(

− 1

12
−

∞
∑

n=0

(n− 1

2
)

)

we find the condition for αNS:

αNS = −d− 2

16
. (48)

In the last step we performed again the zeta-function regularization
∑∞

n=0(n+c) =
ζ(−1, c) = − 1

2
(6c2 − 6c+ 1) with. Therefore, due to (47) we find

d = 10. (49)

Here we just showed that in the case of d = 10 the assignment state - particle is
consistent. There are more rigid calculations due to the Lorentz Algebra of the
target space that give the same result.

5 The Spectrum of the Supersymmetric String

Now we have to discuss the spectra of the R- and the NS-sector separately and
afterwards combine the states to get the general solutions. In the NS-sector we
will find a unique ground-state |k〉, while in the R-sector it will be degenerate, a

14



fact that will have further consequences. We also will perform a certain projection
to get rid of the unwanted states.

First we turn to the NS-sector:

In the NS-sector there are no fermionic zero modes, the vacuum is always
taken to be an eigenstate of the bosonic zero modes (the eigenvalues are the
target space momenta of the state k). Thus it is denoted by |k〉. The mass of the
vacuum is found to be m2 = −8, thus there is again a tachyon in the spectrum.
Because acting with the oscillator modes won‘t change the target space tensor
structure of the states the NS-spectrum is like the spectrum of the bosonic string
and the states can be used to describe target space bosons. The first excited state
bi− 1

2

|k〉 is a massless one, m2 = 0, it corresponds to the vector representation of

SO(8) (because i runs from 1, ...d−1). The next states are given by bi1
2

bj1
2

|k〉 with
mass m2 = 8. It can be shown that these and the following, which are all tensors
of SO(8) combines uniquely to tensors of SO(9), the little group of massive states
in 10 dimensions.

To project the tachyon out we use the GSO-projection, a method which was
first proposed by Gliozzi, Scherk and Olive. This method can be motivated
for different reasons we will not discuss here. For this purpose we introduce a
fermionic number operator F (F̃ ) which counts the number of the right-
(left-) handed worldsheet fermionic creation operators bir(b̃

i
r) of each state. For

the vacuum we set F (F̃ ) = 1, so that F can be written as F = 1 +
∑

r>0 b
i
−rb

i
r.

Then the GSO-projection operator for the NS-sector is defined to be

PGSO =
1 + (−1)F

2
· 1 + (−1)F̃

2
. (50)

The projection now is performed by multiply each state with this operator. From
the formula it is obvious that the states with odd fermionic numbers are removed,
only those with integer F (F̃ ) are left. Luckily we find that the tachyon (F = 1)
is removed. The first excited state (F = 2) stays, and it is easy to continue this
projection. In the end half of the states are removed.

We carry on with the discussion of the Ramond-sector:

From the spectrum of the Ramond-sector finally we will receive the target
space spinors, one of the main motivations for the Superstring. It will turn out
most important to discuss the zero modes di0 which form a target space Clifford
Algebra and thus must be proportional to the target space Γ-matrices (we have
showed this already). Because we are in light-cone gauge there are 8 dir-operators
for the right- and 8 for the left-moving sector each. The dµ0 do not change the
mass of a state (they do not appear in the mass-operator), thus all the dµ0 |k〉 have
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the same mass. Now we rearrange them:

D1 = d2
0 + id3

0 (51)

D2 = d4
0 + id5

0 (52)

D3 = d6
0 + id7

0 (53)

D4 = d8
0 + id9

0. (54)

Then the only non-vanishing anticommutator of the DI´s is

{DI , D
†
I} = 2, (55)

which can easily be seen:

{D1, D
†
1} = {d2

0 + id3
0, d

2
0 + id3

0} = {d2
0, d

2
0} − i({d2

0, d
3
0} − {d3

0, d
2
0}) + {d3

0, d
3
0}

= 1− i(0− 0) + 1 = 2.

Thus the DI are nilpotent, i.e. (D2
I ) = 0. By the above definition we changed

the 8 real into 4 complex modes. We now choose the R-vacuum | − −−−〉 such
as

DI | − − −−〉 = 0 ∀I = 1, ..., 4. (56)

Due to the above anticommutation relation the D†
I act as creation operators

D†3| − − −−〉 = | − −+−〉. (57)

Because of the nilpotency one finds D†
3| − − + −〉 = D†3D

†
3| − − − −〉 = 0. It

is for that reason that the vacuum is 16-fold degenerated. Therefore it is an
on-shell Majorana spinor in ten dimensions (which has 1

2
·2 10

2 = 16 components).

For the left movers the calculation is just the same, only with d replaced by d̃.
In general the described proceeding is an option to construct (massless) spinor
representations when the di0 can be identified with the target space Γ-matrices.

Now we will perform the GSO-projection in the R-sector. Therefore we define
the operator

(−1)F := 24d2
0d

3
0d

4
0d

5
0d

6
0d

7
0d

8
0d

9
0(−1)Ñ (58)

with Ñ =
∑

n>0 d
i
−nd

i
n as the product of all 8-dim. target space Γ-matrices.

This is the usual definition of the chirality operator for the ground states. The
projection operator is now defined as

P±GSO :=
1± (−1)F

2
(59)

and to carry out the GSO-projection in the R-sector each state is multiplied by
it. For the left-movers the proceeding is just the same.

Now the left and right movers are combined. Obviously there are two possi-
bilities of performing the above projection according to the different signs ±. The
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projection removes either all states with even or those with odd chirality and the
16-component Majorana spinor becomes an 8-component Weyl-spinor. The two
different options of projection lead to two different kinds of strings dependent on
whether one choses an equal or an opposite sign for the left and right movers :

• type IIA strings: opposite sign

• type IIB strings: same sign.

To get the complete states of the Superstring Theory the states of the different
sectors (NS,R) have to be tensored together. Then they can be interpreted as
particles. In the following we discuss only the lowest excitation level, i.e. the
massless case. There are 4 options to do so:

NSNS The states describe bosons.

NSR The lowest allowed state is bi− 1

2

|k〉uα, where uα is an 8 component Majorana-

Weyl spinor. Thus there are 8×8 = 64 possible combinations of the vector-
and spinor-components. Those 64 different states decompose into an eight-
and a 56-dimensional representation of the target space little group SO(8).
The spinors, corresponding to the 56 dimensional representation can be
seen to describe a gravitino of fixed chirality, those corresponding to the
eight-dimensional one a dilatino of fixed chirality.

RNS An analogous discussion as in the previous paragraph yields again a grav-
itino and a dilatino for the lowest states.

RR The ground state here is constructed by combining the left and the right
moving vacuum. It therefore has 64 components (analogous to the above
case). The decomposition into irreducible representations of SO(8) belongs
to whether we chose type 2A or type 2B strings.

In the case of type IIA we have an eight-dimensional representation which
corresponds to an U(1) one-form gauge potential and a 56-dimensional rep-
resentation, a three-form gauge potential Cµνρ.

By considering the type IIB string we find an one-dimensional representa-
tion, a zero-form Φ′, a 28-dimensional (a two-formB ′µν) and a 35-dimensional
one, which can be seen as a four-form gauge potential with self-dual field
strength C∗µνρσ.

6 Appendix A: Results of the Bosonic String

Theory

This Appendix shall not be more than a brief summary of the main results of
the Bosonic String Theory which are used in the previous article. Therefore the
reader should apologize any shortcomings.
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The bosonic string action in light cone gauge is given by

S =
1

2πα′

∫

dσ+dσ−∂−X
µ∂+Xµ (60)

with α′, the Regge slope parameter being of dimension (lenght)2 or (mass)2. The
equations of motion follow from a variational principle: δS = 0 by performing
the variation Xµ(σ−, σ+) −→ Xµ(σ−, σ+) + δXµ(σ−, σ+).

0 = δS

=
1

2πα′

∫

dσ+dσ−(∂−X
µδ(∂+X

µ) + ∂+X
µδ(∂−X

µ))

= − 1

πα′

∫

dσ+dσ−(∂+∂−X
µ)δXµ + (boundary terms)

The boundary terms, caused by the partial integration vanish because of the
boundary conditions of the variation and the equations of motion are:

∂+∂−X
µ = 0 (61)

By varying the action with respect to the world-sheet metric hαβ one yields
the energy-momentum tensor which then can be transformed into light-cone co-
ordinates. The result for its components in light-cone coordinates is

T++ =
1

2
∂+X

µ∂+Xµ

T−− =
1

2
∂−X

µ∂−Xµ

T+− = 0

T−+ = 0.

Now one supplements the equations of motion by the costrained equations
T++ = T−− = 0. There is still a residual gauge freedom left, i.e. the earlier
mentioned equivalent form of the action is invariant under the transformation
τ −→ 1

2
(σ̃+(σ+)+ σ̃−(σ−)). Thus τ can be chosen to be a solution of the equation

∂+∂−τ = 0. Because it is a solution of the same equation, X+ = 1√
2
(X0 + X1)

can be fixed:
X+ = x+ + p+τ, (62)

where x+ and p+ are just integration constants, denoting the center of mass
position and momentum of the string in the (+) - direction.

With help of the constraint equations X− can be expressed in terms of the
X i, (i = 2, ..., d − 1), with d the number of bosonic fields. Thus finally we are
left with only d− 2 physical degrees of freedom, d− 2 free fields.
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The general form of the solutions of the equations of motion is

Xµ = Xµ
R(σ

−) +Xµ
L(σ

+), (63)

with the left and right moving solutions

Xµ
R =

1

2
xµ +

1

2
pµσ− +

i

2

∑

n6=0

1

n
αµ
n exp

−2inσ− (64)

Xµ
L =

1

2
xµ +

1

2
pµσ+ +

i

2

∑

n6=0

1

n
α̃µ
n exp

−2inσ+

. (65)

With the definition P µ
τ := ∂L

∂(∂τXµ)
= T∂τX

µ the Poisson Brackets are found

to be
[Xµ(σ), Xν(σ′)]P.B. = −iπδ(σ − σ′)ηµν (66)

[Xµ(σ), Xν(σ′)]P.B. = [Xµ(σ), Xν(σ′)]P.B. = 0. (67)

The bosonic string is now quantized by considering the functions Xµ as op-
erators and performing the replacement

[ , ]P.B. −→
1

i
[ , ] (68)

From the above Poisson Brackets one finds the commutators of the Fourier modes:

[pµ, xµ] = −iηµν , [αµ
n, α

ν
k] = nδn+k,0η

µν , [α̃µ
n, α̃

ν
k] = nδn+k,0η

µν . (69)

If one defines αµ
m := 1√

m
αµ
m and α†µm := 1√

m
the αµ satisfy the usual harmonic

oszillator commutation relations

[αµ
m, α

† ν
n ] = δm,nη

µν (70)

and therefore can be interpreted as creation (m < 0) and annihilation operators
(m > 0) which are acting on a vacuum state and creates all states of the spectrum.

When considering the first excited state of the spectrum one finds that it
must be massless otherwise it can´t be interpreted as a particle. By calculating
the mass one finds that the dimension of the target space, i.e. the space-time in
which the string is propagating, must be 26:

d = 26 (71)

It follows that the lowest mass in the spectrum, the mass square of the ground
state is negative. States with negative mass square are called tachyons, they are
bad news because they indicates that the vacuum is incorrectly identified.

In addition there is a graviton in the spectrum, a massless particle with spin
2, a hint that the theory could give meaning to the concept of quantum gravity.
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6.1 Appendix B: Poisson Brackets and Dirac Brackets

In general the Poisson Brackets of two functions A(Ψ,Π), B(Ψ,Π) are defined as

[A,B]P.B. = −(−1)εAεB

(

∂A

∂Ψ
· ∂B
∂Π

+ (−1)εAεB
∂B

∂Ψ
· ∂A
∂Π

)

, (72)

where εA = 1 for commuting variable A and ε = 0 for anticommuting variables.
If there are second class constraints Φi,Φj whose Poisson Brackets do not

vanish on the constraint hypersurface of phase space, the Poisson Brackets have
to be replaced by Dirac Brackets. If the Φi form a complete set of second class
constraints we define [Φi,Φj]P.B. := Ci j and the Dirac Brackets

[A,B]D.B. := [A,B]P.B. − [A,Φi]P.B.C
−1
i j [Φj, B]P.B.. (73)
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