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1 Motivation

The Relativistic Particle

e Free relativistic particle (mass m) moving in d-dimensional
Minkowski space with 7, = diag(—+ ...+)

]
A

X

x1

o v/(T), u = 1,...,d describe the embedding of the
point particle in space-time

e Action = length of the world-line

S:—m/ds



2 The Relativistic String

The Nambu-Goto Action

e Free string, described by parameters o® = (o, 7)
7: proper time, 0: 0 < o0 < &
with: ¢ = 7 for open string, 6 = 27 for closed string

0

xZ...

o X/ (o, 7), u=1,...,d real functions describe the em-

bedding of the world-sheet in the d-dimensional space

Notation: X = aX and X' = %—f

e [n analogy: action = area of the world-sheet

Sve = —T/dA

T oxraxr Y
_ 2 _ -
— T/d o _ det 507 D7 un

= -T / o [(X - X')? — X2X"]

= T / d?c /—det Ty

Notation 'y = 0, X" 05X "1

1/2

e String tension T = constant, [T = mass”

e Disadvantage: square root



The Polyakov Action

e Introduce metric on the world-sheet hqys(0, 7)
T 2 af
Sp=—7 [0 VhhT 5

using the definition: h = —det hyg

e Energy-momentum tensor defined as the response of
S to varying hag:
1 1 68

g R E—
P TR 6hes

it follows

1 1 5
Taﬁ — §Faﬁ - Zhaﬁh7 F’y5

e Energy-momentum conservation V1,3 = 0

e Equation of motion for hAg:

S
5hen 0
Tos =0

hap 1s a non-propagating field — auxiliary field

e Equation of motion for X*:
1

O, (Vhh P95 X1 = 0
\/E ( 6] )



o If h,p fulfills its equation of motion, then Sp and
Sna are classically equivalent:

1 1
Tos = §raﬁ—1h&5m5rwzo | det, v/~

1 1

—hV‘SFW; = ——/—det Fag

K Vh

T
Sp = =5 / d*c VhhT

- T / %o /—det T3 = Sna

e Symmetries of the Polyakov action
— Poincaré¢ invariance

XF = X' ah XY+ b
Shag = 0

— reparametrization invariance

o — 0% =0"+&%o,T)
XMoo, 1) — XHo,7)+ %o, 7)0, X"

Do Do?
hop(o,7) — e @h,ﬂ;(a, T)
D& DEe
Ohag =
& do® * do?f

— Weyl rescaling

has(o,7) — Q*(0,7)has(o,T)
2o, r) = e2hor)
~ 1+ 2A\(o,7)
Ohas = 2M(0, T)hap
X = 0

b}



e Consequence of Weyl invariance: tracelessness

08 = —T / d*o VhT,56h*"
hTs = 0
(without using the equation of motion 7,5 = 0)

e Conformal gauge: use reparametrization invariance
to get locally:

haﬁ — 92(07 T)naﬁ

Q?(o, 7) can be set to 1 by Weyl rescaling;:

hozﬁ = Tag

e Note: Although reparametrization and Weyl invari-
ance have been used, reparametrizations

DEP De
Oh,g =
7 Qo + do?f

followed by Weyl rescaling and thus only affect X#,

X haﬁ

not the metric hng = 14p.

+

e World-sheet light-cone coordinates o= = 7 4 o

(notation o* = (o*,07))
1

aj: — 5(67— :l: 8(;)

and the metric transforms as

- do” Do 0 —1/2
—l— - p— _— p—
hay(07,07) = do® 809}”6(0’ ) ( —1/2 0)




e Polyakov action in conformal gauge: the world-sheet
metric is neg = /N =1
T

Sp =5 / 20 (X2 — X7

the conjugate momentum is: II* = ;TL — TXH
7

and the Poisson brackets are:
(X"o,7), X (0", T)}pp. = {X"(0,7), X"(0',7)}pp. =0
{X* (o, T),TXV(O/,T)}p'B' = "o — o)

Vanishing of energy-momentum tensor is in confor-
mal gauge equivalent to:

1 .
;XiXY:O

e Equation of motion: varying with respect to X*:

71 _
5S =T / 20 (92 — 9)X"6X, — T / dr X/6X"|7 =0
70

= (0P —0)X'=40,0_X"=0
with the conditions:

XMoo +2m,7)= XHo,7) (closed string)
X/;‘g = 0 (open string)

general solution: X#(c*,07) = Xh(o7) + X} (")

X ]‘é’ ; describe “right”- (respectively “left”-) moving
modes of the string.



e Oscillator expansion

closed string

1 1 —in(T—0o)
Xp(r—0) = §$M + M—Tp”(T —0) JIT Z —ahe
Xi(r+o0) = lx“ + Lp“(T +0)+ Z loz“e_i”(”")
L 2 4T n "

VAT w0

X* are real functions, i.e. (X*) = X# =
e " and p" are real
oo/, = (o) and a", = (a)!

Compute the center of mass momentum:
2T .
Pt = / do TX"(o,7) =p"
0

and the center of mass position:

1 27

— do XH(o,7=0) =2
2T 0

The Hamiltonian is defined as:

H = /Oada(X-H—L)

= T/ do ((0.X)* + (0_X)?)
i
=3 (ap -+ ay - )

: H_ S — 1 1L
Notation o = oy = TP




open string

1 1 1 .
Xh(o,1) = x“+7T—Tp“T+\/7T_T Z gaﬁe_”” cos(no)
£0

as in the closed string case:

wo— 1 1L
. _ T
ay =D
o T/ p' are real

o o’ = (af)

and by inserting X*:

e Constraint T3 = 0in light-cone coordinates:

. N o7 do?
2 = gy

1
T_{_+ — §a+X * 8+X ; O
1
T = J0.X-0.X 20
T =1 .,=0

Energy-momentum conservation V*T,,3 = 0 in light-
cone coordinates:

— (9_T++ ‘|’ 8+T_+ — 8_T++
a—|—T—— + 3_T+_ — 0+T__

This gives:

T = Ty (o")
T =T _(07)



Implies set of infinitely many conserved charges L :
8_(f(0+)TJC+) =0
Ly= 2T/ do f(o")Tiyi (o)
0

and analogously for 7" _.
e Virasoro constraints and Virasoro algebra
closed string

Choose f,,(cF) = exp(imo™) = charges = Fourier
coefficients of T, at 7 = 0:

2
L, = 2T / do e ™MT__
o
= T/ do e "™ (0_X)?
0

— %zﬂ:amn'an

gl
S
I

2T/ dU €+imUT++
0

1
— 5 Z Qp—p, * Ol
n
The charges satisfy the Virasoro algebra:

{Ly, Ln}ps. = —i(m —n)Ly,
{Lm7 Ln}P.B. - _Z(m — n)Lm+n
{Lm, Ly}pe. = 0

Compare to Hamiltonian:
H=1Ly+ L()

10



open string
Because left- and right-movers are not independent,
define:

Lm = 2T/ dO' (eimaT+_{_+€_imaT__)
0

1
- = AOp—n = Oy,
2

again they satisfy:
{Ly, Lo}ypp. = —i(m —n) Ly,

Compare to Hamiltonian:

=1L

11



3 The Quantized Bosonic String

e Dirac’s correspondence principle
XK, XK

u A M

al — &

{,}P.B.—>—.[,]

e By analogy to Poisson brackets: commutator rela-
tions

[ X (0, T),TX”(O’,T)] = in“”5(0 — 0")
(X" o, 1), X" (0, 7)] = [X*o,7),X"(c',7)] =0

by inserting the oscillator expansions

[z, p"] = "
[O#m O‘Z] — [@ﬁn? &ZL] — ma(m—i—n),o UW
@y o] =0

e Compare to harmonic oscillator

— the hermiticity condition still holds
— rescale ot for m > 0:

1 1
CL’u = T&% (Cllfn)T = \/—704_7”
they fulfill harmonic oscillator commutation re-
lations

[aﬁw (GZ)T] - 5m,n77'wj
So «y, are lowering operators for m > 0 and
raising operators for m < 0.
The corresponding number operator (for m > 0)
is: N, = a_;,0,.

12



e Ghosts (negative norm states)
Denote ground state by: |0, p*) consider (m > 0):

[O&%,Oé(lm} = —m
(Offerm,, a2,,]10) = (0lag,al,, |0) — (0]a?,,a7,]0)
;6
= —m(0[0)

so we have a negative norm state:

(Olagal,,|0) = (0](a?,,) el [0)
= [la2,,|0) [
= —m(0[0) <0
However: one can prove that in d = 26 these states
decouple from the physical Hilbert space.

e The Virasoro algebra and normal ordering
Constraint 7T,,3 = 0 corresponds to vanishing of L,:

but a,,, now operators, so order matters. Define:

1 (0.¢)
L, = 3 Z Sy Ol

n=—oo

Normal ordering: raising operators to the left and

lowering operators to the right. Problem only arises
for Ly. Define Ly:

1 (0.]
_ A2 .
Ly = 2a0 + nE_l Q_y - O,

13



Introduce normal ordering constant @ in all formulas
by replacing Ly by (Ly — a).

Now: determine the algebra of the L,,’s
(L, L) = (m —n) Ly + 1—02m(m2 — D)dmn

c appears due to quantum effects and is called cen-
tral charge. Here: ¢ =n/, = d.

Classically all L,, must vanish, but:

(Ol[Ln. Loall6) = (Sf2mLol6)+-Sm(m? 1) (6]6)

so we can not require L,,|¢) =0 Vm, but only

Lylphys) = 0 m>0
(Lo — a)lphys) = 0

This defines the physical states |phys).
Indeed L,, form closed subalgebra for m > 0.

One can show that (Lg— Lg) generates o translations,
which do not affect the string, so:

(Lo — Lo)|phys) =0

14



e Mass-shell condition

open string
1

Using the definitions §a8 = ﬁp’u‘pu = a'p'p, and

N =3 N, yields:
Ly = 1oz2 + i Q_p - QL

(0. 9]
= a'P'pu+ > Nu
n=1

= —a'm*+ N
Applied on a physical state:

(Lo — a)|phys) = 0
am? = N —a

closed string

1 0
Ly = §oz§+;a_n-ozn:—p“pu—|—]\f

_ 1 5 s o _
_ = E ( = LA o

the mass m is now given as:

9 9 9
m” = —pl'p, = m7 +mjy

Ly and Lg applied on a physical state:
o'ms = 2(N —a)
o'my = 2(N —a)
2

with m2L = m¥ as a consequence of Ly — Ly=0.

15



e Light cone gauge
Define: light cone coordinates in space-time

1 0 —1 —_L 0 —1
:Em+ﬂ) X_ﬂ@ X

New coordinates: X+, X, X", i=1,....d — 2.

X—I—

Remaining reparametrization invariance:

DEP Dege
S
do®  dof

in world-sheet light-cone coordinates:
0,6 =0_6" =0 ie & = (07)

o0t = 0% + £F(0%) is the infinitesimal form of the
reparametrization 0= — 6= = 6% (07F).
Therefore

X hag

1
T = §(O+ +07)

transforms into

F= 5670 57 (0)
so 7 arbitrary solution of wave equation:
0,0_7=0
Choose 7 o« X and insert this into constraint
gXiXYZO

solve result with respect to X~ = X~ (X") and thus
X and X are eliminated. One can show that

d—2
Oy - Q= g al o,
i=1

16



e Spectrum of the bosonic string
States are generated by transverse oscillators acting
on the ground state.

open string spectrum

Mass operator:
om?*= (N —a)
acting on ground state gives
a'm?|0,p') = —al0, p’)
acting on first excited state gives
O/mz(@i—ﬂ(),pj» =(1- a)ai—1|oapj>

a' 1|0, p’) is a vector of SO(d — 2). Lorentz group is
SO(d).

Lorentz invariance: little group is

— SO(d — 2) for massless particles
— SO(d — 1) for massive particles

can not combine the fundamental SO(d — 2) repre-
sentation to SO(d — 1). So first excited state must
be massless.

Lorentz invariance = a =1

17



Normal ordering constant is fixed: a = 1. Consider

St - I

n=#0 n#£0

(0.9]

= oz_nozn—l——Zn

n=1

Consider: > n~° = ((s) using the Riemann zeta
function. Converges for s > 1, unique analytic con-
tinuation: ((—1) = —1/12. It follows

d—21
] = ==

2 12
d = 26

Due to Lorentz invariance ¢ = 1 and d = 26
closed string spectrum

Excitation level for left- and right movers equal
Mass operator:

o/m* = 4(N — a)

again ¢ = 1 and d = 26

18



Table 3.1: The five lowest mass levels of the oriented open bosonic string

a'(mass)? states and their little |representation contents
S0O(24) representation contents group with respect to the
little group
j0) .
-1 N '50(25)
1
(1) (1)
ol 1 ]0)
0 O 50(24) E
(24) (24)
al,t|0) al,al |0)
+1 O C+e 50(25) o
(324)
(24)  (299) +(1)
alyl))  at,el l0)  al,a’ ok (o) T
+2 0 Hemose Omso fsows | o0+ O
(24)  (276) + (299) + (1)  (2576) + (24)
alyl0)  alzel,0)  aigel,l0) oo [
o m+H+. D+ —
(24)  (299) + (276) + (1) (299) + (1)
4 +3 . S0(25)
a',,a"_latﬂﬂ) c:‘_larJ'_.la"_ln'_1|D) o .
2><D+EED+EF' OO0+ M+ *amt )
2 x (24) + (2576) + (4576) (17250) + (299) + (1)
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Table 3.2: The three lowest mass levels of the oriented closed bosonic string

level | a’(mass)? states and their little representation contents with
S50(24) representation contents group respect to the little group
0 .
0 -4 . 50(25)
1
(1) (1)
°"_1 51_1 '0)
1 0 EliwE 50(24) (E;_;I x 2@6 x (:)
(24) (24) -
“‘:..:&J_;vlo) ai_laj_laf*_1al_||0) oI
Hxld — (C0se)x (T 4a) (EE) * (EE) = (20150) ¥ (32175)
(24) (24) (299) + (1) (299) + (1)
2 +4 ‘ 50(25)
ﬂizailat1|o) “6_1“1_1&*_3 |0} 11 .
Ox @+ (+e) xO + i +(E'.E[)+(3§) +(1)
(24) (299)+ (1) (299) +(1) (24) ( ) )
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4 Summary

e Starting point: relativistic particle

e [n analogy: string-action = area of world-sheet
e Equivalent: Polyakov action + constraints

e Quantization

e Constraints correspond to Virasoro algebra

2

e Zero mode Virasoro operator leads to mass

e Physical states organize into representations of little
group

e Spin 2 (graviton), “spin 17 (antisymmetric tensor
field) and spin 0 (dilaton) in spectrum of the closed
string

e Problem: Tachyon with negative mass® = Super-
symmetric string theory
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