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1. The Lorentz group

The Lorentz group is defined as the set of transformations

xµ → Λµ
νx

ν

which leave the scalar product 〈x, x〉 := ηµνx
µxν invariant.

(a) Show that the Lie algebra of the Lorentz group is the set of all antisymmetric
matrices. Hint: Reformulate the statement about the invariance of the scalar
product in ηµν = ηρσΛρ

µΛσ
ν and write an element of the Lorentz group as

Λµ
ν ' δµ

ν − iλµ
ν = δµ

ν − iαa(λa)
µ

ν .

(b) Choose
(Mµν)ρ

σ = i(ηµρδν
σ − ηνρδµ

σ)

as a basis for the Lie algebra. What do these matrices look like? Describe the
form of the matrices in words. Verify the commutation relations

[Mµν ,Mρσ] = −i (ηµρM νσ − ηµσM νρ − ηνρMµσ + ηνσMµρ) . (1)

(c) We split the generators into 2 groups:

J i =
1

2
εijkM jk, K i = M0i.

The J ’s have only spacial indices, the K’s have spacial and timelike indices.
Verify the commutation relations

[

J i, J j
]

= iεijkJk,
[

J i, Kj
]

= iεijkKk,
[

Ki, Kj
]

= −iεijkJk,

and describe the meaning of each relation in words. What kind of transforma-
tions do the J ’s and K’s correspond to?

(d) The form of the commutation relations for the Lorentz algebra can still be
simplified. Define

T i
L/R =

1

2

(

J i ± iK i
)

and verify the commutation relations
[

T i
L, T

j
L

]

= iεijkT k
L ,

[

T i
R, T

j
R

]

= iεijkT k
R,

[

T i
L, T

j
R

]

= 0.
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(e) Classify the representations of the Lorentz algebra using what you learned about
su(2) on the previous exercise sheet.

Conclusion: Every representation of the Lorentz algebra can be characterized
by 2 non-negative integers or half-integers (jL, jR).

2. Weyl spinors

Summarizing our foregoing considerations, the Lorentz transformation on Minkowski
space is given by

Λ = exp

(

−
i

2
ωµνM

µν

)

. (2)

Now we take eq. (1) as the definition of the Lorentz algebra and investigate its
representations. To make this point clear, we write D(Λ) instead of Λ.

(a) Define α, β by the equations ωij = εijkαk and βi = ω0i to show

D(Λ) = exp
(

−i
[

~α · ~J + ~β · ~K
])

= exp
(

−i(~α− i~β) · ~TL

)

exp
(

−i(~α+ i~β) · ~TR

)

.

Note that T i
R, T i

L are still unspecified, we only know their algebra. For a parti-
cular representation, we have to make a choice!

(b) Specialize to a representation: Choose the T i
R, T i

L to be the Pauli matrices σi.
The simplest representations of the Lorentz group are (1/2, 0) and (0, 1/2). An
object transforming in the (1/2, 0) representation is called a left-chiral Weyl

spinor. The definition of a right-chiral Weyl spinor is obvious. How many entries
does a Weyl spinor have? Write down the transformation laws for the 2 types
of Weyl spinors.

Let DL, DR denote the transformation matrices for the left- and right-chiral
Weyl spinors.

(c) We want to rewrite the transformation laws for Weyl spinor in the standard
notation of eq. (2). Therefore, we define the generalized Pauli matrices

σµ := (1, σi), σ̄µ := (1,−σi).

Then, we can define the following quantities:

σµν :=
i

4
(σµσ̄ν − σν σ̄µ), σ̄µν :=

i

4
(σ̄µσν − σ̄νσµ).
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Show that the Weyl spinors transform as

ψL 7→ DLψL = exp

(

−
i

2
ωµν σ̄

µν

)

ψL,

ψR 7→ DRψR = exp

(

−
i

2
ωµνσ

µν

)

ψR.

Hint: You know TL, TR explicitly. Using the definitions, express first the K’s
and J ’s in terms of TL, TR. Second, express the Mµν ’s in terms of K’s and J ’s.
Now identify the components of σµν , σ̄µν with the components of Mµν . You will
see that they are equal.

(d) Prove that σ2 = (DL)Tσ2DL. Hint: First, observe that D−1

L = D†
R. Second, show

that σ2DLσ2 = D∗
R. Third, take the transpose of the last expression.

(e) Let (ΦL), (ΨL) be Weyl spinors. Using the result of the last exercise, show that
(ΦL)Tσ2ΨL is invariant under Lorentz transformations.

In the following, we will use this result to construct Lorentz invariant combina-
tions of Dirac spinors.

3. Dirac Spinors

Remember that the gamma matrices in the Weyl representation are given by

γ0 =

(

0 1l2
1l2 0

)

, γi =

(

0 σi

−σi 0

)

.

(a) Examine the behaviour of the Weyl spinors under space reflections P with P :
(x0, ~x) → (x0,−~x) and show that P exchanges left- and right-chiral spinors.

(b) The simplest representation that closes under P is therefore given by

Ψ =

(

ψL

ψR

)

∼ (
1

2
, 0) ⊕ (0,

1

2
).

Ψ is called a Dirac spinor. Show that it transforms as

ψ 7→ Dψ := exp

(

i

2
ωµνγ

µν

)

ψ

under a Lorentz-transformation, with γµν := i
4
[γµ, γν ]. Use your knowledge on

the transformation properties of Weyl spinors.

(c) Derive
D−1γµD = Λµ

νγ
ν .

Hint: Calculate both sides of the equation for infinitesimal transformations and
use the identity [γµ, γνσ] = −(M νσ)µ

ργ
ρ.
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(d) Define γ5 := iγ0γ1γ2γ3. Calculate γ5 in the Weyl representation and show that
γ5 anti-commutes with the other gamma matrices: {γ5, γ

µ} = 0.

(e) In the Weyl representation, we have (γ0)† = γ0, (γi)† = −γi. Define ψ̄ := ψ†γ0

and show that the bilinear covariants

(i) ψ̄ψ (ii) ψ̄ iγ5ψ (iii) ψ̄γµψ (iv) ψ̄γµγ5ψ (v) ψ̄ i[γµ, γν ]ψ

transform under a Lorentz transformation as a scalar, pseudoscalar, vector, pseu-
dovector, (2,0)-tensor, respectively.

(f) Define the projection operators

PL =
1

2
(1 − γ5), PR =

1

2
(1 + γ5).

Show that PL/R project onto the left/right-chiral Weyl spinor.

(g) Show that the Dirac equation is equivalent to the pair of equations

iγµ∂µψR −mψL = 0, iγµ∂µψL −mψR = 0 .

Note that for m = 0, the 2 equations decouple.
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