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1. Electron-Muon Scattering
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Figure 1: Feynman graph. Time goes from left to right.

We present the Feynman rules to calculate the amplitude —iM in QED.

i) An arrow in the direction of time denotes a particle, an arrow in the opposite
direction denotes an antiparticle. Assign a label ¢ to each external particle.
Assign momenta to each particle (including the internal lines) and indicate them
by arrows along the particle lines.

ii) Proceed “backward” along each fermion line. For a particle, proceeding back-
ward means “opposite to the direction of the arrow”. For an antiparticle, pro-
ceeding backward means “in the direction of the arrow”.

iii) Write a factor (Dirac spinor) u(i) for every line which goes into the vertex, and
a factor (i) for every line which points away from the vertex.

iv) Vertices and internal lines (propagators) contribute as follows:
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The indices of the ’s are contracted with the g, of the photon propagator. The
coupling constant is g. = v4ma. In Heaviside-Lorentz units, g. = e.

v) Use 4-momentum conservation at the vertices to eliminate the internal momenta.



In the lab frame where the particle B is initially at rest and is assumed to be so
heavy that recoil effects are negligible, the differential cross section for the process

AB — AB is given by
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(a) Using the Feynman rules for QED, derive

g2
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for the electron-muon scattering amplitude.

(b) To calculate the cross section, we need to know |M|? = MM*. Using the

identities
u=ul0, AT =70 A0yt =0 (492 =1,
show that
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¢) In a typical experiment, the particle beam is unpolarized and the detectors sim-
yp p p p
ply count the number of particles scattered in a given direction. Therefore, we
have to avarage over initial spins and sum over final spins.

The avaraging over the initial spins is easy: It contributes a factor of 1/2 for
each sum.

Using the completeness relation for Dirac spinors,

Z Ua(p, S)ab(pv S) = (/p/_l_ m]l)abv

(a, b spinor indices) show that the summation over the final spins for the first
factor in eq. (2) can be written as

> alps, ss)v" u(py, s1)u(pr, 51)7"ulps, s3) = Tr[(p§ + me)y (pf + me)y”].

By relabeling, derive the analogous result for the second factor in eq. (2). The
final result is

i >, MP= i@f—ep#Tr[%me)v“(mme)v”] T [(pimu) v (P5+m) 0]
(3)

Note that the problem of calculating the cross section has been reduced to
matrix multiplication and taking the trace!
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(d) To deal with the above expression, we need some efficient techniques to calculate
the trace of products of gamma matrices. Prove the following identities:

i) Tr(y*) = 0.
ii) Tr(y#y") = 49"
Hint: Use {v*,v*} = 2¢**1 and the fact that the trace is cyclic.
iif) Tr(y#9"9?) =0
Hint: Use (75)% = 1, {75,7*} = 0 and the fact that the trace is cyclic.
iv) Te(y#y"y™7) = 4g" g™ — g"*g" + g"7g").
(e) Consider the first trace in eq. (3). Using the identities proved in (1d), derive

Tr [(p5 + me )™ (1 + me)y"] = 4(i'ps + pivh — 9" p1 - p3 + ¢"'m3).

(f) By relabeling, derive the result for the second trace in eq. (3). Substitute your
results in eq. (3) and show that it takes the following form:
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Now expand the brackets and contract the indices. Show that the result is:
(IMP?) = 8—g§((p p2) (D3-pa)+(p1-pa) (P2-ps) —m, (pr-ps) = (pa-pa) +2mZm2,)
(P1—P3)41234 1'P4)(D2°P3 p\P1°P3 e(D2:Pa My,

(g) So far everything is written covariantly and is independent of a special coor-
dinate frame. To make contact with measurements, we specialize to the rest
system of the muon and make an approximation as m, > m.. Denote by
p := |pi| the absolute value of the initial electron momentum. Denote by 6 the
angle between p; and p3.

Draw 2 diagrams, one before the scattering process and one after the scatter-
ing process. Write the 4-momenta under the respective diagrams, taking into
account the approximation we have made. Show that in the approximation
m, > m., conservation of energy-momentum gives |p3| = |pi| = p. Prove the
following identities:

0 0
(p1 — ps)? = —4p*sin® 5 p1 - p3 = m?2 + 2p*sin? 2
(p1-p2)(p3 - pa) = EQ?”I”LZ, Do Py = mi.

(h) Insert the above expressions into eq. (1) for the cross section to obtain the
Mott formula

do 1 g
dQ 6472 ptsintf/2

[mZ + p® cos® /2]

which reduces to the Rutherford formula in the non-relativistic limit p < m..



2. Spontaneous Symmmetry Breaking in the Linear Sigma Model

As an application of spontaneous symmetry breaking, we want to have a look at the
linear sigma model which consists of N real scalar fields with the Lagrangian

) ) S U
L= Z (%3@’8%@ - %;ﬂcb"cb’ -7 (qbw)z) . i=1,..,N.

(a) Let us find the symmetry group of the Lagrangian: We transform the fields
&' — RY¢/. What kind of matrices R are allowed such that £ remains invariant?

(b) Find the minimum ¢} of the potential. You will find that the minimum is any
@ that fulfills
2@: Po0 =
This condition determines only the length of the “vector” ¢}. We choose coor-

dinates such that ¢} points into the N-th direction:

¢6<$):<0,0,-..,0,0), 'U:ﬁ.

(c) Now we break the symmetry by defining a set of shifted fields
¢'(z) = (7*(z),v+0o(2)), k=1,.,N-1

Rewrite the Lagrangian in terms of the m and o fields. The result is
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(d) Have a look at the system after spontaneous symmetry breaking. How many
massive and massless fields are there now? What is the symmetry of the new
Lagrangian? Compare your result to Goldstone’s Theorem which says that for
every spontaneously broken continuous symmetry, the theory must contain a
massless particle.



