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1. Dimensional Regularization of ϕ4 Theory

Consider the Lagrangian of a real scalar field:

L =
1

2
∂µϕ∂µϕ − 1

2
m2 ϕ2 − 1

4!
λϕ4

The Feynman rules for ϕ4 theory are very simple:

� ∼ i
p2−m2+iε

∼ −iλ

(a) At 1-loop order, the propagator will receive a correction:

To calculate this loop graph, we need one final Feynman rule: Integrate over
the momentum of the particle running in the loop. If it is a fermion, pick up an
extra factor of -1.

Using the Feynman rules given above, calculate the amplitude for the correction
to the propagator, and call the resulting integral I(m).

(b) The amplitude I(m) is divergent in d = 4 dimensions. Generally, the integrals
are “less divergent” when the dimension d decreases. Perform the integration
in d dimensions:

I(d,m) =

∫

ddk

(2π)d

i

k2 − m2 + iε

We will later take d → 4. Now, perform a Wick rotation:

i. View k0 as a complex variable. Draw the complex k0-plane. The integration
is along the real axis. Mark the positions of the poles of the propagator.

ii. Rotate the axes by 90◦. The integration which ran from −∞ to +∞ now
runs from −i∞ to +i∞. Explain why this rotation does not change the
value of the integral.
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iii. Change variables: k0 = iq0, ki = qi. Perform the variable substitution
in the integral. The q0 integration runs from −∞ to +∞. Rename the
variables q → k.

Your final result should read

I(d,m) =

∫

ddk

(2π)d

1

k2 + m2
.

(c) The integral only depends on the absolute value of k. Change to radial coor-
dinates. You will need the area of the sphere in d dimensions which is given
by

Vol(∂Bd) =
dπd/2

Γ(d/2 + 1)
.

Then substitute

x =
m2

|k|2 + m2
↔ |k|2 + m2 =

m2

x
↔ 1 − x =

|k|2
|k|2 + m2

.

Your final result should read

I(d,m) =
d(4π)−d/2(m2)d/2−1

2Γ(d/2 + 1)

∫

1

0

dx(1 − x)d/2−1x−d/2.

(d) Use the definition of Euler’s beta function

B(α, β) =

∫

1

0

dx xα−1(1 − x)β−1

and the relations

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
, Γ(z + 1) = zΓ(z) (1)

to arrive at the following expression for the 1-loop correction of the propagator:

I(d,m) = (4π)−d/2(m2)d/2−1Γ(1 − d/2). (2)

(e) The gamma function Γ(z) has 1st order poles at negative integers and 0. The
case d → 4 corresponds to 1 − d/2 → −1, so the result has a pole as expected.
To isolate the pole, we have to expand Γ(1− d/2) near d = 4. Define ε = 4− d.
Using eq. (1), first show that

Γ(1 − d/2) =
2

ε

Γ(1 + ε/2)

−1 + ε/2
.

Now we can expand around Γ(1) 6= ±∞. Taylor expand the gamma function
in the numerator and its denominator (geometric series). Discarding all terms
linear and higher order in ε, your final result should read

Γ(1 − d/2) = −
(

2

ε
+ 1 + Γ′(1)

)

. (3)
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(f) The first 2 factors in eq. (2) also have to be expanded in powers of ε, because if
their expansion contains terms of order ε, there is a non-vanishing contribution
from their product with the pole of the gamma function. First, substitute
ε = 4 − d to obtain

(4π)−d/2 (m2)d/2−1 = (4π)−2 m2 (4π)ε/2 (m2)−ε/2.

A dimensionfull quantity cannot be expanded in a power series. We introduce
the so-called renormalization point µ which has the dimension of mass:

(4π)−d/2 (m2)d/2−1 = (4π)−2 m2 (µ2)−ε/2 (4π)ε/2

(

m2

µ2

)−ε/2

(4)

Next, use the relation

x = exp log x = 1 + log x +
1

2!
(log x)2 +

1

3!
(log x)3 + . . .

to expand the last 2 factors in eq. (4). Your final result should read

(4π)−2 m2 (µ2)−ε/2

(

1 +
ε

2
log 4π − ε

2
log

m2

µ2
+ . . .

)

. (5)

(g) Substituting your results obtained in eqs. (3), (5) into the expression for the
1-loop correction of the propagator given in eq. (2), show the following result:

I(d,m) = −(4π)−2 m2 (µ)−ε/2

(

2

ε
+ 1 + Γ′(1) − log

m2

4πµ2
+ O(ε)

)

(h) At 1-loop, the 4-point-function will receive a correction which is of 2nd order in
λ:

Calculate the amplitude for the correction to the 4-point-function, and call the
resulting integral J(d,m, q). Note that the resulting amplitude depends on the
sum of incoming momenta q = p1 + p2. Do not forget to impose 4-momentum
conservation at the vertices.

(i) Prove the so-called Feynman trick:

1

ab
=

∫

1

0

dx
1

[x a + (1 − x) b]2

Hint: Solve the integral by variable substitution y = (a − b)x + b.

3



(j) Use the Feynman trick to rewrite the correction to the amplitude:

J(d,m, q) =

∫

1

0

dx

∫

ddk

(2π)d

1

[(k + xq)2 − ∆]2
, ∆ = −x(1 − x)q2 + m2 (6)

(k) It is clear that we may shift the integration variable k in eq. (6) to get

J(d,m, q) =

∫

1

0

dx

∫

ddk

(2π)d

1

(k2 − ∆)2
.

Differentiating eq. (2) with respect to m2, derive

d

dm2
I(d,m) =

∫

ddk

(2π)d

i

(k2 − m2 + iε)2
= (4π)−d/2(m2)d/2−2Γ(2 − d/2).

Use this result to obtain

J(d,m, q) =

∫

1

0

dx i(4π)−d/2∆d/2−2 Γ(2 − d/2).

(l) Proceeding analogously to (1e)-(1g), show the following result:

J(d,m, q) = i(4π)−2(µ)−ε/2

(

2

ε
+ Γ′(1) − log

m2

4πµ2
−
∫

1

0

dx log
∆

m2

)

Note: The integral can be solved explicitly, see e.g. Gradshteyn, Ryzhik, “Table

of Integrals, Series, and Products”, p. 250, eq. 2.733.

So far, we have regularized the divergent integrals, i.e. we have separated the
infinite and finite parts. The procedure to get rid of the infinities using physical
input data is called renormalizing the theory. We will deal with renormalization in
one of the next exercise sheets.
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2. Triplet Higgs and the ρ parameter

On the last exercise sheet, we learned that the GWS theory makes use of a Higgs
doublet to break the SU(2)L × U(1)Y gauge symmetry. After diagonalization of the
mass matrices with the help of the Weinberg angle tan θW = g′

g
, the vector boson

masses were found to be

M2

W± =
1

4
v2g2, M2

Z =
1

4
v2(g2 + g′2), M 2

A = 0.

(a) Calculate the ρ parameter for the GWS model, where ρ is defined by

ρ :=
M2

W±

M2
Z cos2 θW

Now consider again the Lagrangian from the last exercise sheet

L = (DµΦ)† (DµΦ) + µ2Φ†Φ − λ
(

Φ†Φ
)2 − 1

4
F i

µνF
iµν − 1

4
GµνG

µν

but Φ is now a triplet (φ++, φ+, φ0)T under SU(2)L and the 3 dimensional generators
of SU(2)L are given by

T 1 =
1√
2





0 1 0
1 0 1
0 1 0



 , T 2 =
i√
2





0 −1 0
1 0 −1
0 1 0



 , T 3 =





1 0 0
0 0 0
0 0 −1





(b) Calculate the hypercharge of Φ and write down the covariant derivative.

(c) Calculate the vacuum expectation value
〈

Φ†Φ
〉

=: v2

2
of the Higgs field and define

the shifted field.

(d) Find the vector boson masses from the shifted Lagrangian. Calculate the ρ
parameter for this model.

Experiment says ρ = 1. Which of the two models can you rule out?
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