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1. Renormalization of ϕ4 Theory

The Lagrangian for ϕ4 theory is

L =
1

2
∂µϕ0 ∂

µϕ0 −
1

2
m2

0 ϕ
2
0 −

1

4!
λ0 ϕ

4
0. (1)

We write φ0, m0, λ0 to emphasize that these are the “bare” wave function, mass, and
coupling, respectively, and not the values measured in experiments.

Define a renormalized field ϕ by

ϕ0 = Z1/2ϕ.

Substituting the renormalized field into eq. (1) for the bare Lagrangian gives

L =
1

2
Z ∂µϕ∂

µϕ−
1

2
m2

0 Z ϕ
2
−

1

4!
λ0 Z

2 ϕ4. (2)

(a) Show that by introducing the so-called counterterms

δZ = Z − 1, δm = m2
0Z −m2, δλ = λ0Z

2
− λ,

the Lagrangian in eq. (2) can be rewritten as

L =
1

2
∂µϕ∂

µϕ−
1

2
m2 ϕ2

−
1

4!
λϕ4 +

1

2
δZ∂µϕ∂

µϕ−
1

2
δmϕ

2
−
δλ
4!
ϕ4. (3)

Note that the bare mass m0 and the bare coupling λ0 have been “eliminated”.

The new terms which appear in the Lagrangian eq. (3) lead to new Feynman rules:

� ∼
i

p2−m2+iε
∼ −iλ

∼ i(p2δZ − δm) ∼ −iδλ
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At the cost of introducing counterterms (which modify the Feynman rules of the
original theory), we have rewritten the Lagrangian in terms of renormalized quanti-
ties which are the physically measured parameters of the theory. The counterterms
have absorbed the infinite, but unobservable shifts between the bare and physical
parameters.

Now we have to give a precise definition of the physical mass and the physical coupling
constant. Define m2 to be the pole of the propagator, and λ to be the magnitude of
the scattering amplitude at zero momentum:

!
=

i

p2 −m2
+ terms regular at p2 = m2 (4)

!
= −iλ at s = 4m2, t = u = 0 (5)

These equations are called renormalization conditions.

Using the first renormalization condition, we will now determine δZ and δm.

(b) The “basic” 1-loop correction to the propagator will now involve 2 graphs, since
we have new Feynman rules:

−iM(p2) ≡ 1PI = + (6)

Show that the 1PI is given by

−iM2(p2) = −
iλ

2
I(d,m) + i(p2δZ − δm), (7)

where I(d,m) is the integral calculated in exercise (1g) on the previous exercise
sheet. The 1/2 is a symmetry factor as will be explained in class.

(c) Show that the full 2-point function at 1-loop is given by

≡ � + 1PI + 1PI 1PI + · · ·

=
i

p2 −m2 −M(p2)
.

Hint: Write down the amplitudes of the graphs on the right hand side, factor
out i/(p2 −m2), then use the formula for the geometric series.
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(d) Use the renormalization condition eq. (4) to derive

M2(p2) = 0 at p2 = m2,
d

dp2
M2(p2) = 0 at p2 = m2. (8)

Hint: The first equation is trivial to prove. The second one follows from the
fact that the residue of the expression in eq. (4) is 1.

(e) Using the explicit expression for M 2(p2) which you calculated in eq. (7), verify
that

δZ = 0, δm = −
λ

2
I(d,m)

satisfy the renormalization conditions as given in eq. (8).

Using the second renormalization condition, we will now determine δλ.

(f) Consider the basic 2-particle scattering amplitude iΛ(p1p2 → p3p4):

= +

1

2

4

3

+

1

3

4

2

+

1

4

2

3

+ (9)

By convention, take all momenta as flowing into the vertex. Indicate this con-
vention by drawing the arrows corresponding to momentum flow in the above
diagrams. Explain why these are the graphs to be included. As to the loop
graphs, consider a permutation of 1,2,3,4 not included in eq. (9), and show that
it turns out to be equal to one of the 3 graphs given above.

(g) Introduce the Mandelstam variables

s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2,

where p1, p2 flow into the vertex and p3, p4 flow out of the vertex. Show that
the sum of the incoming momenta of the 3 loop graphs in eq. (9) is s, t, u,
respectively.

(h) Show that the scattering amplitude eq. (9) is given by

iΛ(p1p2 → p3p4) = −iλ−
1

2
(−iλ)2 [J(s) + J(t) + J(u)] − iδλ, (10)

where J(p2) is the integral calculated in exercise (1`) on the previous exercise
sheet. The 1/2 in front of the J ’s is a symmetry factor as will be explained in
class.

(i) Use the renormalization condition eq. (5) to derive

δλ = −
iλ2

2

[

J(4m2) + 2J(0)
]

.

(j) Crosscheck

Insert the expression for δλ into eq. (10) for the physical scattering amplitude
to see that it is indeed finite.
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2. Charge Conjugation, Parity & Time Reversal on Spinors

Under parity, charge conjugation and time reversal a Dirac field ψ transforms
as

Pψ(x)P−1 = (ηP P ) ψ(xP ) xµ
P = (x0,−x)

Cψ(x)C−1 = (ηC C) ψ̄(x)T

Tψ(x)T−1 = (ηT T ) ψ(xT ) xµ
T = (−x0,x),

where P, C, T are the linear, linear and antilinear operators that implement
these operations on Dirac spinors.

(a) To find the parity transformation P , we remember that a Lorentz transformation
acts on Dirac spinors as ψ 7→ D(Λ)ψ (exercises 2) where D(Λ) fulfills

D(Λ)−1γµD(Λ) = Λµ
νγ

ν

in order to be consistent with the Dirac equation. Show that an explicit repre-
sentation of the parity operation in terms of γ matrices is D = ηP γ

0, where ηP

is a complex phase of modulus one.
(Remark: In the chiral representation the operator γ0 exchanges the left- and
righthanded Weyl spinors ψL, ψR in ψ in agreement with the definition of parity
in exercise 2.3.a)

(b) For the charge conjugation C take the Dirac equations for a particle ψ and its
antiparticle ψc

(

i/∂ − e/A−m
)

ψ = 0 particle
(

i/∂ + e/A−m
)

ψc = 0 antiparticle

To find the operator that transforms ψ 7→ ψc, conjugate (“bar”) and transpose
the first equation to arrive at

[

γµT (−i∂µ − eAµ) −m
]

ψ̄T = 0.

Show that if we find an operator C such that CγµTC−1 = −γµ, we can identify
the charge conjugate field as ψc = (ηC C) ψ̄T . Here ηC is again a complex phase
of modulus one. Show that an explicit realisation of C in terms of γ matrices
is possible: C = iγ0γ2. Note that the effect of the charge transformation is to
reverse the internal quantum numbers (here only the U(1)Q charge).

(c) To find T , start again with the Dirac equation, perform a time reversal. Show
that we need a matrix T that fulfills Tγµ∗T−1 = γµ† and that then the correctly
transformed spinor is ψ 7→ ψt = (ηT T ) ψ∗ Show that an explicit realisation in
terms of γ matrices is given by T = iγ5γ0γ2.
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(d) Show that, if X is a matrix acting on Dirac spinors,

C ψ̄(x)Xψ(x)C−1 = ψ̄(x)XCψ(x) XC = CX tC−1,

T ψ̄(x)Xψ(x)T−1 = ψ̄(xT )XTψ(xT ) XT = T−1X∗T,

P ψ̄(x)Xψ(x)P−1 = ψ̄(xP )XPψ(xP ) XP = γ0Xγ0.

Hint: ψ and ψ̄ anti-commute.

(e) Use the preceding exercise to determine the transformation properties of the
bilinear covariants under parity, charge conjugation and time reversal .

(i) ψ̄ψ (ii) ψ̄ iγ5ψ (iii) ψ̄γµψ (iv) ψ̄γµγ5ψ (v) ψ̄ i[γµ, γν ]ψ
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