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1. Dynkin Diagram of SU(n)

Consider the space of all n × n matrices and regard it as a Lie algebra (of GL(n)).
We choose as a basis the elements eab with components

(eab)ij = δai δbj.

(a) Verify the multiplication rule and thus the commutator operation on the algebra

eab ecd = ead δbc , [eab, ecd] = ead δbc − ecb δad.

In order to deal with the Lie algebra of SU(n), we restrict ourselves to traceless n×n
matrices. Therefore, the algebra consists of linear combinations of eab for a 6= b and
of elements h =

∑

i λieii where
∑

i λi = 0. We say that the set of all h forms the
Cartan subalgebra H. The dimension of the Cartan subalgebra is called the rank

of the algebra. We notice that the rank of the SU(n) algebra is n− 1 and call it also
An−1.

(b) Show that the elements of the Cartan subalgebra mutually commute. Calculate
also the commutation relation with the other elements

[h, eab] = (λa − λb) eab.

We can regard the above equation as an eigenvalue equation where the operation
[h, . ] acts on the eigenvector eab to reproduce eab with the eigenvalue (λa − λb). Or
we can regard the above equation (for eab fixed) as a prescription how to associate
to each h ∈ H a number (λa − λb). We can write this prescription as

αeab
(h) = λa − λb.

We call αeab
a root. The roots live in the dual space of the Cartan subalgebra, H∗.

Let α1, α2 . . . αn be a fixed basis of roots so every element of H
∗ can be written as

ρ =
∑

i ciαi. We call ρ positive (ρ > 0) if the first non-zero coefficient ci is positive.
If the first non-zero coefficient ci is negative, we call ρ negative. For ρ, σ ∈ H, we
shall write ρ > σ if ρ − σ > 0. A simple root is a positive root which cannot be
written as the sum of two positive roots.
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(c) We choose as a basis in the root space the functionals

αi(h) = λi − λi+1 i = 1, 2, ..., n− 1.

Verify the simple fact that as these roots are a basis, they are positive with
α1 > α2 · · · > αn−1. Show that these roots are simple roots. Hint: Show first
that every root can only have coefficients ci ∈ {0, 1}.

Next, we define a structure that resembles a scalar product on the algebra. Let ti be
a basis of the algebra, then the double commutator with any two algebra elements
will be a linear combination in the algebra.

[x, [y, ti]] =
∑

j

Kijtj.

The Killing form is then defined as K(x, y) := Tr(K).

(d) Prove that the Killing form on the Cartan subalgebra is bilinear and symmetric.
(It is, however, in general not positive definite and thus not a scalar product.)
Determine K(h, h′), where h =

∑

i λi eii, h
′ =

∑

j λ
′

j ejj.

The Killing form enables us to make a connection between the Cartan subalgebra,
H, and its dual H∗: One can prove that if α ∈ H∗, there exists a unique element
hα ∈ H such that

α(h) = K(hα, h) ∀h ∈ H.

(e) Calculate K(hαi
, h) with the help of the above theorem and find hαi

from com-
parison with your result from (d).

With the help of the hα, we are now able to define a scalar product on H
∗:

〈αi, αj〉 := K(hαi
, hαj

), where αi, αj ∈ H∗.

(f) Calculate the Cartan matrix, defined by

Aij :=
2 〈αi, αj〉

〈αj, αj〉
.

The information about the algebra that is encoded in the Cartan matrix is complete
in the sense that it is equivalent to knowing all structure constants. There is one more
equivalent way of depicting the algebra information in drawing a Dynkin diagram:
To every simple root αi, we associate a small circle and join the small circles i and j
with AijAij (no summation) lines.

(g) Draw the Dynkin diagram for An (i.e. SU(n+ 1)).
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2. The Exceptional Lie Algebra G2

The Dynkin diagram completely encodes the properties of a semi-simple Lie algebra.
We take the exceptional Lie algebra G2 as an illustrative example.
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Figure 1: Dynkin diagram of G2

(a) Using the Dynkin diagram given in fig. 1, derive the Cartan matrix A of G2.
Hint: From the definition of the Cartan matrix, it follows that the diagonal
entries are equal to 2. To find the remaining 2 entries, remember that they are
non-positive integers, the number of lines between the ith and the jth root in
the Dynkin diagram is AijAji, and the second root is short.

Dynkin’s Algorithm

Start with the highest weight λ. For each positive Dynkin label λi > 0, construct the
sequence of weights λ − αi, λ − 2αi, . . . , λ − λiαi. (Note that λi denotes a number,
whereas αi is the ith simple root given by the ith row of the Cartan matrix.) This
process is repeated with λ replaced by each of the weights just obtained, and iterated
until no more weights with positive Dynkin labels are produced. Note that this
algorithm tells you nothing about the multiplicities of the weights.

(b) The special representation where the highest weight is the highest root is called
the adjoint representation. The highest root of G2 is given by θ = (1, 0). Using
Dynkin’s algorithm described above, calculate the roots of G2. How many roots
are there? What is the dimension of the Lie algebra?

(c) Determine the positive roots of G2. Hint: Write each root as a linear com-
bination of the 2 simple roots. By definition, a root is positive if the first
non-vanishing entry is positive.

Scalar product in Dynkin labels

In Dynkin labels, the scalar product is not simply given by the “usual” scalar product
of 2 vectors, but by the expression

(α, β) =
∑

i,j

αiQijβj,

where Q is the quadratic form matrix whose components are given by

Qij = (A
−1)ij

α2
j

2
.
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(d) Determine the quadratic form matrix. Hint: By convention, the long root has
length 2. Using the definition of the Cartan matrix, you can infer the length of
the short root.

(e) Calculate the length of the 2 simple roots, and their products. As a crosscheck,
calculate the Cartan matrix and compare with exercise (a).

(f) The lowest dimensional representation of G2 is given by the heighest weight λ =
(0, 1). Calculate the weights of this representation. Assuming the multiplicities
of all weights to be 1, determine the dimension of the irrep.

Freudenthal Recursion Formula

The multiplicity of λ′ in the representation given by the highest weight λ can be
calculated in terms of the multiplicities of all the weights above it:

[

|λ+ ρ|2 − |λ′ + ρ|2
]

multλ(λ
′) = 2

∑

α>0

∞
∑

k=1

(λ′ + kα, α)multλ(λ
′ + kα)

ρ = (1, 1, . . . , 1) is the so-called Weyl vector, the round brackets denote the scalar
product, and the absolute value squared is given by the scalar product.

(g) Dynkin’s algorithm does not keep track of the multiplicities of the weights. Use
the Freudenthal recursion formula to calculate the multiplicity of the weight
α = (0, 0) in the irrep given by λ = (0, 1).
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