
Physikalisches Institut Exercise 10
Universität Bonn Jan 13, 15 2004
Theoretische Physik WS 03/04

Exercises on Elementary Particle Physics
Prof. Dr. H.-P. Nilles

1. The Renormalization Group and β-Functions

Consider ϕ4 theory in d dimensions, where the Lagrangian is given by

L =
1

2
∂µϕ0 ∂

µϕ0 −
1

2
m2
0 ϕ

2
0 −

1

4!
λ0 ϕ

4
0

=
1

2
Z ∂µϕ∂

µϕ− 1

2
m2
0 Z ϕ2 − 1

4!
λ0 Z

2 ϕ4 + counterterms.

Let Γ(2)(p, λ,m, µ) denote the renormalized inverse propagator [cf. Exercise 7, (1.c)].

(a) The propagator is the vacuum expectation value of the time ordered product of
2 fields, i.e.

〈0|Tϕ(x1)ϕ(x2)|0〉.
What is the relation between the bare and renormalized inverse propagator?

(b) The bare inverse propagator Γ
(2)
0 (p, λ0,m0) is independent of the arbitrary mass

scale µ introduced by dimensional regularization, i.e.

µ
∂

∂µ
Γ
(2)
0 (p, λ0,m0) = 0.

Express the bare inverse propagator in terms of the renormalized one and apply
the chain rule. Using the definitions

γ(λ) =
1

2
µ
∂

∂µ
logZ, β(λ) = µ

∂λ

∂µ
, mγm(λ) = µ

∂m

∂µ
,

the result can be expressed in a neat form. The result reads

[

µ
∂

∂µ
+ β(λ)

∂

∂λ
− 2γ(λ) +mγm(λ)

∂

∂m

]

Γ(2)(p, λ,m, µ) = 0. (1)

These equations are called the renormalization group equations.
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We will now derive a similar equation which describes the behavior of Γ(2)(p, λ,m, µ)
under a change of scale

p→ tp, m→ tm, µ→ tµ.

The mass dimension of Γ(2)(p, λ,m) in d dimensions is given by D = d+ 2, i.e.

Γ(2)(tp, λ,m, µ) = tD · Γ(2)(p, λ, t−1m, t−1µ). (2)

(c) Using eq. (2), derive

[

t
∂

∂t
+m

∂

∂m
+ µ

∂

∂µ
−D

]

Γ(2)(tp, λ,m, µ) = 0. (3)

(d) Using eq. (1), eliminate the term involving µ from eq. (3). The result reads

[

−t ∂
∂t

+ β(λ)
∂

∂λ
− nγ(λ) +m(γm(λ)− 1)

∂

∂m
+D

]

Γ(2)(tp, λ,m, µ) = 0. (4)

Note that if β(λ) ≡ γ(λ) ≡ γm(λ) ≡ 0, this equation reduces to

[

t
∂

∂t
+m

∂

∂m

]

Γ(2)(tp, λ,m) = D · Γ(2)(tp, λ,m),

and the effect of the scaling is simply given by the mass dimension D, as we would
naively expect. Renormalization inevitably introduces a different scaling behavior.
One way of thinking of eq. (4) is to say that a change in t can be compensated by a
change in λ(t), m(t), and an overall factor which we will call f(t) such that

Γ(2)(tp, λ,m, µ) = f(t) · Γ(2)(p, λ(t),m(t), µ). (5)

This equation relates the inverse propagator at hight momenta tp to the inverse
propagator at low momenta p, but with different parameters, λ(t) and m(t). This is
the so-called “running” of the parameters.

(e) Differentiate eq. (5) with respect to t and derive

[

−t ∂
∂t

+
t

f

df

dt
+ t

∂m

∂t

∂

∂m
+ t

∂λ

∂t

∂

∂λ

]

Γ(2)(tp, λ,m, µ) = 0. (6)

(f) Comparing eqs. (4) and (6) yields

t
∂λ(t)

∂t
= β(λ), t

∂m

∂t
= m [γm(λ)− 1] ,

t

f

df

dt
= D − nγ(λ).
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λ(t) and m(t) are running parameters. If we know, e.g. β(λ) (the so-called β-

function), we can calculate the coupling constant at another energy scale.

2. Renormalization of the Electric Charge in QED

We calculate loop corrections to the photon propagator in QED due to the vacuum
polarization diagram. We will see that the correction can be interpreted as a renor-
malization effect on the electric charge, the QED coupling constant. The vacuum
polarization diagram is given by the (amputated) Feynman diagram

q

k + q

k

q
µ ν

(a) Write down the matrix element iΠµν(q) for this process. Use the QED Feynman
rules from 4.1 plus the additional information on loop graphs from 6.1. You will
find

iΠµν(p) = −e2
∫

d4k

(2π)4
tr

[

γµ
k/+m

k2 −m2 + iε
γν

k/+ q/+m

(k + q)2 −m2 + iε

]

.

(Hint: The trace comes from the contraction of the 4-spinor indices.)

(b) Use the trace theorems for γ matrices from 6.1 to simplify the numerator. (Note
that the denominator is a scalar with respect to the trace.) The result is

4
{

kµ(k + q)ν + kν(k + q)µ − gµν(kρ(k + q)ρ −m2)
}

.

(c) Introduce a Feynman parameter and use the Feynman trick from 6.1 to combine
the two denominators. The result is

∫ 1

0

dx
1

[`2 + x(1− x) q2 −m2 + iε]2
,

where ` = k + xq.

(d) Shift the integration variable from an integration over k to an integration over
` and argue that you can drop all terms linear in `.

(e) Perform a Wick rotation to Euclidean space and substitute `0 = i`4. Remember
that now you can safely drop the iε term in the denominator. Thus, we obtain
as an intermediate result

iΠµν(q) = −4ie2
∫ 1

0

dx

∫

d4`

(2π)4

1
2
gµν`2 − 2x(1− x) qµqν + gµν(m2 + x(1− x) q2)

(`2 +∆)2
,

where ∆ = m2 − x(1− x) q2.
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(f) In QED one can prove that, due to the gauge symmetry, all terms proportional
to qµ or qν vanish in every S-matrix calculation. Drop the corresponding term
from your result. (The proof makes use of the so-called Ward identity of QED.)

(g) In Euclidean space we can now change to polar coordinates.
∫

d4` =

∫

r3 dΩ4 = 2π2
∫

dr r3.

Perform subsequently the substitution dr → d(r2).

(h) Let us regularize the divergent integral by a cutoff. Use

∫

∞

0

d(r2)→
∫ Λ

0

d(r2)

Verify that in the limit of large Λ the following approximations hold

∫ Λ2

0

x

[x+∆]2
→ ln

Λ2

∆
− 1,

∫ Λ2

0

x2

[x+∆]2
→ Λ2 − 2∆ ln

Λ2

∆
+∆

in order to obtain

iΠµν(q) = − ie2

4π2

∫ 1

0

dx

{

1

2
gµν

(

Λ2 − 2∆ ln
Λ2

∆
+∆

)

+

+gµν
[

x(1− x) q2 +m2
]

(

ln
Λ2

∆
− 1

)}

.

(i) This result is not gauge invariant, because the cutoff regularisation does not
respect the QED symmetry. We can, however, restore the symmetry by discar-
ding all terms that are not proportional to q2. (The terms not proportional to q2

would give rise to a photon mass which is not allowed by the gauge symmetry.)

(j) In the remaining terms, apply our knowledge about the cutoff value ΛÀ q2 and
ΛÀ m2. The final result is

iΠµν(q) =
ie2

12π2
gµνq2 ln

m2

Λ2
.

(k) We can now use this result to calculate the loop corrected photon propagator.
Calculate the correction at one loop and find the result that the propagator is
given by

− ig
µν

q2

[

1 +
e2

12π2
ln
m2

Λ2

]

.

(l) Now calculate the correction to all orders. Using the geometric series as in 7.1
you will obtain

− ig
µν

q2

[

1

1− e2

12π2 ln
m2

Λ2

]

=: − ig
µν

q2
Z3.
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As every propagator ends in two vertices, we can also use our original propagator
and multiply

√
Z3 to each vertex ieγµ (see 4.1) instead. Thus, we can regard

√
Z3 as

a factor multiplying the electromagnetic charge which gives the renormalized charge

or renormalized coupling constant:

eR :=
√

Z3 e
2

Note that it is the renormalized charge that is measured in experiments. In order to
distinguish the renormalized (physical) charge from the original parameter e in the
Lagrangian, we speak of e as the bare charge or bare coupling constant.
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