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1. Some Calculations for the Lecture

In the lecture, the following equations defined our system of units:

c = 2.998 × 108 m

s
= 1

~ = 1.055 × 10−34 Js = 1

In particle physics, it is common to measure energies in units of GeV, not in J. The
conversion factor is given by:

1 J = 6.241 × 109 GeV

(a) Calculate the conversion factors for cm in GeV−1 and s in GeV−1, i.e. show that

1 cm ≈ 5.07 × 1013 GeV−1

1 s ≈ 1.52 × 1024 GeV−1 .

2. The Dirac Equation

Using the operator substitutions (~ = 1)

~p → −i~∇

E → i∂t

it is possible to get the equations for quantum mechanics from the energy-momentum
relations. E.g. from the non-relativistic equation E = p2/2m one obtains the Schro-
edinger equation.

(a) Obtain the Klein-Gordon equation from the relativistic energy-momentum re-
lation (c = 1)

E2 = ~p2 +m2 .

Dirac’s basic idea was to “factorize” the Klein-Gordon equation to obtain an
equation which is first-order in the derivatives.
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(b) Make the ansatz
Hψ = (αipi + βm)ψ . (1)

Squaring the Hamilton operator eq. (1) and using H2ψ = E2ψ should give the
Klein-Gordon equation. Show that from this requirement, it follows:

β2 = α2
i = 11 and {β, αi} = {αi, αj} = 0, i 6= j

(c) Why are the αi and the β not numbers? Why do they have to be hermitian?
(A hermitian ↔ A† = A) What does it imply?

(d) Define the Dirac matrices γµ, µ = 0, . . . , 3 by

γ0 = β, γi = βαi, i = 1, 2, 3 .

Show that the Dirac equation Hψ = Eψ can be written in the covariant form

(iγµ∂µ −m)ψ = 0 . (2)

(e) Show that the gamma matrices fulfill the Clifford algebra

{γµ, γν} = 2ηµν
11 , ηµν = diag(1,−1,−1,−1). (3)

(f) Show the following relations:

γ0† = γ0 γk† = −γk

(

γ0
)2

= 11
(

γk
)2

= −11 γµ† = γ0γµγ0

The lowest dimensional matrices satisfying the Clifforf algebra eq. (3) are 4× 4. The
choice of the matrices is not unique. We give two representations: the Weyl (or chiral)
representation:

γ0 =

(

0 11

11 0

)

, αi =

(

−σi 0
0 σi

)

, γi =

(

0 σi

−σi 0

)

(4)

and the Dirac-Pauli representation:

γ0 =

(

11 0
0 −11

)

, αi =

(

0 σi

σi 0

)

, γi =

(

0 σi

−σi 0

)

(5)

Whereas the Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

satisfy the anticommutation relation {σi, σj} = 2δij11.

(g) Verify that each set of matrices eqs. (4, 5) fulfills the Clifford algebra eq. (3).
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3. Free solutions of the Dirac equation

Since H is represented by a 4×4 matrix, the ψ’s are four-component column ’vectors’
(called spinors):

ψ = (ψ1, ψ2, ψ3, ψ4)
T

(a) Use the covariant form of the Dirac equation eq. (2) to show that for every ψα,
α = 1, . . . , 4:

(2 +m2)ψα = 0

(Note: α = 1, . . . , 4 has nothing to do with a space-time index µ = 0, . . . , 3.)

For free particles we can therefore make the following ansatz:

ψ = u(p)e−ip·x

(b) Plug this ansatz into (1) and use the Dirac-Pauli representation eq. (5) to show
that

Hu =

(

m112 ~σ · ~p
~σ · ~p −m112

) (

uA

uB

)

= E

(

uA

uB

)

,

with u split into two two-component spinors uA and uB.

(c) What are the energy eigenvalues for a particle at rest? Interpret the result.

(d) Now take ~p 6= 0. We will label the solutions by an index (s). You can find two

solutions by choosing u
(s)
A = χ(s) with χ(1) = (1, 0)T and χ(2) = (0, 1)T . What are

the corresponding uB? What can you say about the energy eigenvalues of this
solutions? Proceed analogously for the remaining two solutions. Don’t bother
about normalizations for now.

(e) It’s convenient to choose the so called covariant normalization
∫

ψ†ψdV = 2E .

Use this to derive the normalizations of the u(s)s.

From the solutions, we see that there are always two solutions per eigenvalue and we
therefore got a degeneracy. Such degeneracies are always due to additional symme-
tries.

(f) Show that the operator

Σ · p̂ ≡

(

~σ · ~̂p 0

0 ~σ · ~̂p

)

with ~̂p ≡ ~p/|~p|

corresponds to an observable, i.e. that it commutes with H and P . The associa-
ted quantum number 1

2
~σ · ~̂p is called helicity. Choose ~p along the z-axis. What

are the helicities of the χ(s)?
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