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1. Representations of su(2)

A Lie algebra g is a vector space together with a mapping
[ s axg—g
satisfying the following conditions:

(a) The mapping is bilinear (i.e. linear in both entries).
(b) The mapping is skew-symmetric: [a,b] = —[b, a] for a,b € g
(c) Tt fulfills the Jacoby identity: [a, [b, c]] + [b, [c, a]] + [¢, [a, b]] = O for a,b,c € g

A representation p of a Lie algebra g on a vector space V is a linear mapping
p:g— End(V)
which is an algebra homomorphism, i.e. p([a,b]) = [p(a), p(b)]. The dimension of V'

is called the dimension of the representation: dim(p) := dim(V).

If there is a vector spce W C V so that p(W) C W, then the representation is called
reducible and V' is called the invariant subspace. If such a W does not exist, the
representation is called irreducible.

In other words: a representation is irreducible, iff the only invariant subspace is V'
itself.

As an example, we will concentrate on the algebra su(2) in the following.

(a) The group SU(2) is the set of all 2-dimensional unitary matrices with determi-
nant 1. Show that the corresponding Lie algebra su(2) is the set of all traceless
hermitian matrices. Hint: detA = exp Tr logA.

(b) Choose the basis
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for the traceless hermitian matrices. Define

1 1 1
g3, J+:§(01—|—i02), szi(a'l—i(fg),

and verify the commutation relations

s, Ju] = Jo, [T J)=—J_,  [J.,J]=2J5.

Next, we want to consider all irreducible, finite-dimensional representations
of su(2) on a vector space V, p(J;) € End(V), i = 3,4+, —. We want to find out, how
to classify these representations and which dimensions dim(V') are allowed.

(c)

(2)

Since J5 is diagonal, p(J3) can also be choosen to be diagonal. Therefore V' can
be decomposed into eigenspaces of p(J3),

V=@V..

where «a labels the eigenvalue of p(Js), i.e.
(p(J3))v = awv, veV,, aecC

(shorthand: write J; for p(J;)). Show that J, (v) € V41 and J_(v) € V4
Prove that all complex eigenvalues o which appear in the above decomposition
differ from one another by 1.

Hint: Choose an arbitrary oy € C from the decomposition and prove that

P Vaysr CV

keZ

is indeed equal to V' using the irreducibility of the representation.
Argue that there is k € N for which V. +x # 0 and V,,x+1 = 0. Define n :=
g + k. Note that up to now, we only know that n € C.

Draw a diagram. Write the vector spaces V,,_5, V,,_1 and V,, in a row and indicate
the action of Js3, J and J_ on these vector spaces by arrows.

The eigenvalue n is called highest weight and a vector v € V,, is called highest
weight vector. Is it clear why?

Choose an arbitrary vector v € V,, (highest weight vector). Prove that the
vectors v, J_v, J?v, ... span V.

Hint: Show that the vector space spanned by these vectors is invariant under
the action of Js3, J, and J_ and use the irreducibility of the representation.

Argue that all eigenspaces V,, are 1-dimensional.
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(h) Prove that n is a non-negative integer or half-integer and that
V=V,&...&V,.

Complement your diagram drawn in part (e). What is the dimension of the
representation?

Hint: The representation is finite dimensional, so there exists m € N for which
J™ 1 # 0 and J™v = 0. Evaluate the product J,.J™v.

(i) Consider the tensor product of a 2-dimensional and a 3-dimensional irreducible
representation of su(2):
V=v®gv®

Show that the resulting representation V' is reducible and that it can be decom-
posed into a 2-dim. and a 4-dim. irreducible representation. Shorthand: 2 ® 3
=24

Hint: The first thing to note is that the action of a Lie algebra on the tensor
product of 2 representations is given by: X (v @ w) = Xv @ w+v ® Xw, i.e. the
eigenvalue of .J3 on V is the sum of the eigenvalues of J5 on V) and V©®) . Draw
the diagrams of the eigenvalues (with multiplicities). Then use the fact that the
eigenspaces of irreducible representations are 1-dimensional.

2. The Lorentz group

The Lorentz group is defined as the set of transformations
ot — AP z”
which leave the scalar product (z,z) := n,,2"*z" invariant.
(a) Show that an element A of the Lie algebra of the Lorentz group satisfies:
A = —nNAn

Hint: Reformulate the statement about the invariance of the scalar product in
Nuw = Npe A, A7, and write an element of the Lorentz group as A, ~ 08 — i\,

(b) Choose
(MY = i85 — 68)

as a basis for the Lie algebra. What do these matrices look like? Describe the
form of the matrices in words. Verify the commutation relations

(M, MPT) = —i (M7 — M A ). (1)
(c) We split the generators into 2 groups:
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The J’s have only spatial indices, the K’s have spatial and timelike indices.
Verify the commutation relations

[J5, ) =itk [T K] = i€t kY, (KT KT = —ielt g,
and describe the meaning of each relation in words. What kind of transforma-
tions do the J’s and K’s correspond to?

The form of the commutation relations for the Lorentz algebra can still be
simplified. Define

(J'£iK")

DO | =

i/R =
and verify the commutation relations
(T7,T7) = ie’* Ty, [Th, Th] =ie* Tk, [T5.T%] =0.

Classify the representations of the Lorentz algebra using what you learned about
su(2).

Conclusion: Every representation of the Lorentz algebra can be characterized
by 2 non-negative integers or half-integers (jr., jr)-

3. Weyl spinors - part I

Summarizing our foregoing considerations, the Lorentz transformation on Minkowski
space is given by

A =exp (—%wWM“”) : (2)

Now we take eq. (1) as the definition of the Lorentz algebra and investigate its
representations. To make this point clear, we write D(A) instead of A.

(a)

Define «, 3 by the equations w;; = €0, and §3; = wp; to show
D(A) = exp (—i [07. J+ 4. z?]) — exp (_i(a —if). fL) exp <_Z~(o7+ i) - fR) _

Note that T%, Tt are still unspecified, we only know their algebra. For a parti-
cular representation, we have to make a choice!

Specialize to a representation: Choose the T%, T% to be the Pauli matrices o;.
The simplest representations of the Lorentz group are (1/2,0) and (0,1/2). An
object transforming in the (1/2,0) representation is called a left-chiral Weyl
spinor. The definition of a right-chiral Weyl spinor is obvious. How many entries
does a Weyl spinor have? Write down the transformation laws for the 2 types
of Weyl spinors.

Let Dy, Dr denote the transformation matrices for the left- and right-chiral
Weyl spinors.

To be continued ...



