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1. Representations of su(2)

A Lie algebra g is a vector space together with a mapping

[·, ·] : g × g → g

satisfying the following conditions:

(a) The mapping is bilinear (i.e. linear in both entries).

(b) The mapping is skew-symmetric: [a, b] = −[b, a] for a, b ∈ g

(c) It fulfills the Jacoby identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 for a, b, c ∈ g

A representation ρ of a Lie algebra g on a vector space V is a linear mapping

ρ : g → End(V )

which is an algebra homomorphism, i.e. ρ([a, b]) = [ρ(a), ρ(b)]. The dimension of V
is called the dimension of the representation: dim(ρ) := dim(V ).

If there is a vector spce W ⊂ V so that ρ(W ) ⊂ W , then the representation is called
reducible and V is called the invariant subspace. If such a W does not exist, the
representation is called irreducible.

In other words: a representation is irreducible, iff the only invariant subspace is V
itself.

As an example, we will concentrate on the algebra su(2) in the following.

(a) The group SU(2) is the set of all 2-dimensional unitary matrices with determi-
nant 1. Show that the corresponding Lie algebra su(2) is the set of all traceless
hermitian matrices. Hint: detA = exp Tr logA.

(b) Choose the basis

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

1



for the traceless hermitian matrices. Define

J3 =
1

2
σ3, J+ =

1

2
(σ1 + iσ2) , J− =

1

2
(σ1 − iσ2) ,

and verify the commutation relations

[J3, J+] = J+, [J3, J−] = −J−, [J+, J−] = 2J3 .

Next, we want to consider all irreducible, finite-dimensional representations

of su(2) on a vector space V , ρ(Ji) ∈ End(V ), i = 3, +,−. We want to find out, how
to classify these representations and which dimensions dim(V ) are allowed.

(c) Since J3 is diagonal, ρ(J3) can also be choosen to be diagonal. Therefore V can
be decomposed into eigenspaces of ρ(J3),

V =
⊕

Vα,

where α labels the eigenvalue of ρ(J3), i.e.

(ρ(J3))v = αv, v ∈ Vα, α ∈ C

(shorthand: write Ji for ρ(Ji)). Show that J+(v) ∈ Vα+1 and J−(v) ∈ Vα−1

(d) Prove that all complex eigenvalues α which appear in the above decomposition
differ from one another by 1.

Hint: Choose an arbitrary α0 ∈ C from the decomposition and prove that

⊕

k∈Z

Vα0+k ⊂ V

is indeed equal to V using the irreducibility of the representation.

(e) Argue that there is k ∈ N for which Vα0+k 6= 0 and Vα0+k+1 = 0. Define n :=
α0 + k. Note that up to now, we only know that n ∈ C.

Draw a diagram. Write the vector spaces Vn−2, Vn−1 and Vn in a row and indicate
the action of J3, J+ and J− on these vector spaces by arrows.

The eigenvalue n is called highest weight and a vector v ∈ Vn is called highest
weight vector. Is it clear why?

(f) Choose an arbitrary vector v ∈ Vn (highest weight vector). Prove that the
vectors v, J−v, J2

−
v, . . . span V.

Hint: Show that the vector space spanned by these vectors is invariant under
the action of J3, J+ and J− and use the irreducibility of the representation.

(g) Argue that all eigenspaces Vα are 1-dimensional.
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(h) Prove that n is a non-negative integer or half-integer and that

V = V−n ⊕ . . . ⊕ Vn .

Complement your diagram drawn in part (e). What is the dimension of the
representation?

Hint: The representation is finite dimensional, so there exists m ∈ N for which
Jm−1
−

v 6= 0 and Jm
−

v = 0. Evaluate the product J+Jm
−

v.

(i) Consider the tensor product of a 2-dimensional and a 3-dimensional irreducible
representation of su(2):

V = V (2) ⊗ V (3)

Show that the resulting representation V is reducible and that it can be decom-
posed into a 2-dim. and a 4-dim. irreducible representation. Shorthand: 2 ⊗ 3

= 2 ⊕ 4.

Hint: The first thing to note is that the action of a Lie algebra on the tensor
product of 2 representations is given by: X(v ⊗w) = Xv⊗w + v ⊗Xw, i.e. the
eigenvalue of J3 on V is the sum of the eigenvalues of J3 on V (2) and V (3). Draw
the diagrams of the eigenvalues (with multiplicities). Then use the fact that the
eigenspaces of irreducible representations are 1-dimensional.

2. The Lorentz group

The Lorentz group is defined as the set of transformations

xµ → Λµ
νx

ν

which leave the scalar product 〈x, x〉 := ηµνx
µxν invariant.

(a) Show that an element λ of the Lie algebra of the Lorentz group satisfies:

λT = −ηλη

Hint: Reformulate the statement about the invariance of the scalar product in
ηµν = ηρσΛρ

µΛ
σ

ν and write an element of the Lorentz group as Λµ
ν ' δµ

ν − iλµ
ν.

(b) Choose
(Mµν)ρ

σ = i(ηµρδν
σ − ηνρδµ

σ)

as a basis for the Lie algebra. What do these matrices look like? Describe the
form of the matrices in words. Verify the commutation relations

[Mµν , Mρσ] = −i (ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ) . (1)

(c) We split the generators into 2 groups:

J i =
1

2
εijkM jk, Ki = M0i.
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The J ’s have only spatial indices, the K’s have spatial and timelike indices.
Verify the commutation relations

[

J i, J j
]

= iεijkJk,
[

J i, Kj
]

= iεijkKk,
[

Ki, Kj
]

= −iεijkJk,

and describe the meaning of each relation in words. What kind of transforma-
tions do the J ’s and K’s correspond to?

(d) The form of the commutation relations for the Lorentz algebra can still be
simplified. Define

T i
L/R =

1

2

(

J i ± iKi
)

and verify the commutation relations
[

T i
L, T j

L

]

= iεijkT k
L,

[

T i
R, T j

R

]

= iεijkT k
R,

[

T i
L, T j

R

]

= 0.

(e) Classify the representations of the Lorentz algebra using what you learned about
su(2).

Conclusion: Every representation of the Lorentz algebra can be characterized
by 2 non-negative integers or half-integers (jL, jR).

3. Weyl spinors - part I

Summarizing our foregoing considerations, the Lorentz transformation on Minkowski
space is given by

Λ = exp

(

−
i

2
ωµνM

µν

)

. (2)

Now we take eq. (1) as the definition of the Lorentz algebra and investigate its
representations. To make this point clear, we write D(Λ) instead of Λ.

(a) Define α, β by the equations ωij = εijkαk and βi = ω0i to show

D(Λ) = exp
(

−i
[

~α · ~J + ~β · ~K
])

= exp
(

−i(~α − i~β) · ~TL

)

exp
(

−i(~α + i~β) · ~TR

)

.

Note that T i
R, T i

L are still unspecified, we only know their algebra. For a parti-
cular representation, we have to make a choice!

(b) Specialize to a representation: Choose the T i
R, T i

L to be the Pauli matrices σi.
The simplest representations of the Lorentz group are (1/2, 0) and (0, 1/2). An
object transforming in the (1/2, 0) representation is called a left-chiral Weyl

spinor. The definition of a right-chiral Weyl spinor is obvious. How many entries
does a Weyl spinor have? Write down the transformation laws for the 2 types
of Weyl spinors.

Let DL, DR denote the transformation matrices for the left- and right-chiral
Weyl spinors.

To be continued ...
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