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1. Dirac spinor - part II

Last time, we discussed Lorentz transformations D(Λ) acting on a Dirac spinor Ψ(x).
We repeat the result (a little bit more detailed):

Ψ(x) 7→ Ψ′(x′) = D(Λ)Ψ(x) = exp

(

−
i

2
ωµνγ

µν

)

Ψ(x) (1)

D denotes here a representation of the proper orthochronous Lorentz group, i.e.
detΛ = +1 and Λ0

0
≥ 1. This part of the full Lorentz group contains the identity

and can therefore be expressed by the exponential function.

(a) Prove the following equation:

[γµ, γνσ] = (Mνσ)µ
ργ

ρ (2)

(b) Derive
D−1γµD = Λµ

νγ
ν (3)

Hint: Use infinitesimal transformations D ≈ 11 − i
2
ωµνγ

µν and Λµ
ν ≈ δµ

ν −
i
2
ωρσ(M

ρσ)µ
ν and use eqn. (2).

Note: This equation holds for the full Lorentz group, i.e. also for the parity
transformation.

(c) Prove the following equations:

{γ5, γµ} = 0 and [γ5, D] = 0

(Note: D is here a proper orthochronous Lorentz transformation and can there-
fore be expressed by eqn. (1). So, D cannot be the parity operation.)

(d) Show that
D† = γ0D−1γ0

and from this that follows

Ψ̄(x) 7→ Ψ̄(x)D−1 .

1



(e) Next, we consider the parity operator, i.e. (ΛP )0

0
= 1 and (ΛP )i

i = −1. Show
that one representation of the parity operator is:

DP = γ0

Hint: Use eqn. (3).

(f) Examine the action of the parity operator DP = γ0 on a Dirac spinor in the
chiral representation.

(g) Now, we can analyse the list of five bilinear covariants (i.e. they are bilinear in
the field and covariant under proper orthochronous Lorentz transformation, e.g.
Ψ̄γµΨ transforms like a four-vector). Check the covariance and the behaviour
under parity:

scalar Ψ̄Ψ

vector Ψ̄γµΨ

tensor Ψ̄γµνΨ

pseudo − scalar Ψ̄γ5Ψ

pseudo − vector Ψ̄γ5γµΨ
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2. Non-Abelian Gauge Symmetry - part II

In part I, we defined the covariant derivative:

DµΨ = (∂µ + igAa
µT

a)Ψ with (DµΨ) 7→ U(x)(DµΨ)

(a) Define the field strength tensor by

(DµDν − DνDµ)Ψ =: ig
(

F a
µνT

a
)

Ψ.

and find for the components of F

F a
µν = ∂µAa

ν − ∂νA
a
µ − gf abcAb

µAc
ν.

(b) Note that the covariant derivative was constructed such that D′
µU(x) = U(x)Dµ

holds (cf. Exercise 4, 3(d)). Therefore

[(DµDν − DνDµ) Ψ]′ = U(x)(DµDν − DνDµ)Ψ

is valid. Derive the transformation property of the field strength tensor

Fµν 7→ F ′
µν = UFµνU

−1

F a
µν 7→ F a

µν
′ = F a

µν − f abcαbF c
µν

where Fµν = F a
µνT

a.

(c) Because of the last equation, the field strentgh tensor itself is not gauge invariant.
Verify that the product

tr (FµνF
µν)

is gauge invariant. The trace is taken over the matrix entries of the generators.

As this term is gauge invariant, we have to add it to the Lagrangian. It gives rise
to self couplings of the gauge bosons. The final result for the gauge invariant Dirac
Lagrangian is

L = Ψ̄(x) (iγµDµ) Ψ(x) −
1

2
tr (FµνF

µν)
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3. Spontaneous Symmmetry Breaking in the Linear Sigma Model

As an application of spontaneous symmetry breaking, we want to have a look at the
linear sigma model which consists of N real scalar fields with the Lagrangian

L =
1

2
∂µφi∂µφi −

1

2
µ2φiφi −

λ

4

(

φiφi
)2

, sum over i = 1, . . . , N,

with λ > 0 and µ2 < 0.

(a) Let us find the symmetry group of the Lagrangian: We transform the fields
φi 7→ Rijφj. What kind of matrices R are allowed such that L remains invariant?

(b) Find the minimum φi
0

of the potential. You will find that the minimum is any
φi

0
that fulfills

∑

i

φi
0
φi

0
= −

µ2

λ
.

This condition determines only the length of the “vector” φi
0
. We choose coor-

dinates such that φi
0

points into the N-th direction:

φi
0
(x) = (0, 0, . . . , 0, v) , v =

√

−
µ2

λ
.

(c) Now we break the symmetry by defining a set of shifted fields

φi(x) :=
(

πk(x), v + η(x)
)

, k = 1, .., N − 1.

Rewrite the Lagrangian in terms of the π and η fields. The result is

L =
1

2
∂µη∂µη + µ2η2 − λvη3 −

λ

4
η4

+
1

2
∂µπk∂µπk − λvη

(

πkπk
)

−
λ

2
η2

(

πkπk
)

−
λ

4

(

πkπk
)2

.

(d) Have a look at the system after spontaneous symmetry breaking. How many
massive and massless fields are there now? What is the symmetry of the new
Lagrangian? Compare your result to Goldstone’s Theorem which says that for
every spontaneously broken continuous symmetry, the theory must contain a
massless particle.
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