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1. Representations of SU(n) - part II

(a) We consider a representation ρ of SU(n). The generators are denoted by ρ(ta).
For elements of the Cartan subalgebra, we also may write ρ(h). Follow from the
commutator

[ρ(ta), ρ(tb)] = ifabcρ(tc)

that also −ρ(ta)
∗ forms a representation, called the complex conjugate of ρ. We

denote it by a bar, ρ̄. ρ is said to be a real representation if it is equivalent to
its complex conjugate.

(b) Show that if M i is a weight in ρ, −M i is a weight in ρ̄.

Hint: Use the fact that the Cartan generators are hermitian and the definitions
of Ex.9.2.

(c) As an example, consider SU(3). Draw the weights of the representations 3 and
3̄ (see Ex.9.2(d)). Confirm that the highest weight of the representation 3̄ is
(0, 1) in Dynkin coefficients.
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2. Symmetry Breaking and Branching Rules

The basic idea of Grand Unification is that the Standard Model gauge group can
be embedded in a simple group, e.g. SU(5). From a mathematical point of view, the
problem is to determine the subalgebras of the simple group under consideration.

α4α3α1 α2

Abbildung 1: Dynkin diagram of SU(5).

Dynkin’s Symmetry Breaking

To each simple root one assigns an integer number, called the Kac-label ai. They
are given as the coefficients of the decomposition of the highest root in the basis
of simple roots. Deleting any node with Kac-label ai = 1 from the Dynkin diagram
gives a maximal regular subalgebra plus a U(1) factor.

(a) In the case of SU(5), all Kac-labels are 1. Apply Dynkin’s rule to find the
symmetry breaking yielding the Standard model gauge group, i.e.

SU(5) → SU(3) × SU(2) × U(1).

(b) The lowest dimensional representation of SU(5) is given by the highest weight
(1, 0, 0, 0). Using the highest weight construction, calculate the weights in this
representation.

(c) The irreducible representation corresponding to the highest weight (1, 0, 0, 0) of
SU(5) is a reducible representation of SU(3)×SU(2). In part (a) you have learned
that α1 and α2 correspond to SU(3) and α4 corresponds to SU(2). Consequently,
every weight λ decomposes into

λ = (λ1, λ2, λ3, λ4) → (λ1, λ2|λ4) = (µ|ν).

As a first step, write down all weights (µ|ν). Next, find the highest weight µ.
Determine the weights and the dimension of the corresponding representation.
Consider now the values of ν belonging to this µ-representation. What is the
dimension of the ν-representation? Repeat these steps starting with the highest
weight ν. The result reads

5 → (3, 1) ⊕ (1, 2).

(d) Repeat the analysis for the representation corresponding to the highest weight
(0, 1, 0, 0). The result reads

10 → (1, 1) ⊕ (3̄, 1) ⊕ (3, 2).

Note: All weights which appear in the calculation have multiplicity 1.
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(e) (Optional!) Repeat the analysis for the representation corresponding to the hig-
hest weight (1, 0, 0, 1). The result reads

24 → (8, 1) ⊕ (1, 3) ⊕ (3̄, 2) ⊕ (3, 2) ⊕ (1, 1).

Note: All weights which appear in the calculation have multiplicity 1, except
for (0, 0, 0, 0) in 24 of SU(5) with multiplicity 4, and (0, 0) in 8 of SU(3) with
multiplicity 2.

3. Spontaneous Symmetry Breaking in SU(5)

We want to describe the SU(5) breaking by introducing a Higgs field in the adjoint,
denoted as a 5 × 5 hermitian traceless matrix. (Note that this is not the Higgs field
of the Standard Model, which would reside in the 5̄.) Then we can write the scalar
potential in the form

V (H) = −m2Tr
(

H2
)

+ λ1

(

Tr
(

H2
))2

+ λ2Tr
(

H4
)

,

where we have imposed a symmetry H → −H to remove a cubic term for simplicity.

(a) Show that H can be transformed into a real diagonal traceless matrix

H = UHdU
† with Hd := diag(h1, h2, h3, h4, h5).

Hint: Use the SU(5) transformation property H → H ′ = UHU †

(b) Find that at the minimum of the scalar potential all hi’s satisfy the same cubic
equation.

4λ2h
3

i + 4λ1ahi − 2m2hi − µ = 0 with a =
∑

j

h2

j .

where µ is a Lagrange multiplier which accounts for the constraint
∑

i hi = 0.

This means that the vacuum expectation values of the hi’s can at most take on three
different values φ1, φ2, φ3. Let n1, n2, n3 be the number of times φ1, φ2, φ3 appear in
〈Hd〉:

〈Hd〉 := diag(φ1, .., φ2, .., φ3) with n1φ1 + n2φ2 + n3φ3 = 0.

Next, we want to determine the symmetry breaking due to the vev of the Higgs.

(c) First, consider the case of a Higgs boson H in the fundamental representation
n of a gauge group G (e.g. 2 of SU(2), 3 of SU(3) etc). We write the Higgs field
as a vector

H = (h1, . . . , hn)T

3



with n entries and the generators T a of G as n × n matrices. Assume that the
Higgs H acquires a vev 〈H〉 due to some potential.

Show that from the kinetic term of the Higgs,

(DµH)† (DµH) =
(

∂µH + igT aAa
µH

)† (

∂µH + igT bAbµH
)

,

follows that a gauge boson Aa
µ is massless, if T a 〈H〉 = 0. Therefore, T a belongs

to the resulting gauge group G′.

(d) Next, consider the case of a Higgs boson H in the adjoint representation with
the kinetic term Tr(DµH)†(DµH). Follow the discussion of part (c) and deduce
that

T a ∈ G′ if [T a, 〈H〉] = 0

T a /∈ G′ if [T a, 〈H〉] 6= 0

Discuss also the case, where some linear combination of generators commutes
with the Higgs vev!

Back to the SU(5) case, the result of part (d) implies that the most general form of
symmetry breaking is

SU(5) → SU(n1) × SU(n2) × SU(n3)

as well as additional U(1) factors which leave 〈Hd〉 invariant. It turns out that,
depending on the relative magnitude of the parameters λ1 and λ2, the combinations
(3, 2, 0) or (4, 1, 0) for (n1, n2, n3) minimize the potential. Thus,

SU(5) → SU(3) × SU(2) × U(1)

or
SU(5) → SU(4) × U(1),

which would give restrictions on phenomenologically desirable values of λ1, λ2.
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