Exercises on Elementary Particle Physics

Prof. Dr. H.-P. Nilles

1. Renormalization of the Electric Charge in QED - part I

We calculate loop corrections to the photon propagator in QED due to the vacuum polarization diagram. We will see that the correction can be interpreted as a renormalization effect on the electric charge, the QED coupling constant. The vacuum polarization diagram is given by the (amputated) Feynman diagram

(a) Write down the matrix element $i\Pi^{\mu\nu}(q)$ for this process. Use the QED Feynman rules from Ex.6.2 plus the additional Feynman rules:

Propagator of fermions with momentum q	$i \frac{q+m}{q^2-m^2}$
Loop momentum k	$\int \frac{d^4k}{(2\pi)^4}$
Fermion loop	$\cdot(-1)$

You will find

$$i\Pi^{\mu\nu}(p) = -e^2 \int \frac{d^4k}{(2\pi)^4} \operatorname{tr}\left(\gamma^{\mu} \frac{k + m}{k^2 - m^2 + i\epsilon} \gamma^{\nu} \frac{k + q + m}{(k+q)^2 - m^2 + i\epsilon}\right)$$
(1)

(Hint: The trace comes from the contraction of the spinor indices of the γ -matrices. $i\epsilon$ is added by hand to avoid an infinity when $k^2 = m^2$ or $(k+q)^2 = m^2$.)

(b) Use the trace theorems for γ matrices from Ex.2.3 to simplify the numerator of eqn. (1). (Note that the denominator is a scalar with respect to the trace.) The result is

$$4\left\{k^{\mu}(k+q)^{\nu}+k^{\nu}(k+q)^{\mu}-g^{\mu\nu}(k_{\rho}(k+q)^{\rho}-m^{2})\right\}.$$

(c) Prove the so-called Feynman trick:

$$\frac{1}{ab} = \int_0^1 dx \frac{1}{[xa + (1-x)b]^2}$$

Hint: Solve the integral by variable substitution y = (a - b)x + b.

(d) Use the Feynman trick to combine the two denominators of eqn. (1). The result reads

$$\int_0^1 dx \, \frac{1}{\left[\ell^2 + x(1-x)\,q^2 - m^2 + i\epsilon\right]^2}$$

where $\ell = k + xq$.

(e) Shift the integration variable from an integration over k to an integration over ℓ and argue that you can drop all terms linear in ℓ . The result is:

$$i\Pi^{\mu\nu}(q) = -4e^2 \int \frac{d^4\ell}{(2\pi)^4} \int_0^1 dx \frac{2\ell^{\mu}\ell^{\nu} + 2x^2q^{\mu}q^{\nu} - 2xq^{\mu}q^{\nu} - g^{\mu\nu}\ell^2 - g^{\mu\nu}(x^2q^2 - xq^2 - m^2)}{(\ell^2 - \Delta + i\epsilon)^2}$$
(2)

where $\Delta = m^2 - x(1-x)q^2$.

- (f) In QED one can prove that, due to the gauge symmetry, all terms proportional to q^{μ} or q^{ν} vanish in every S-matrix calculation. Drop the corresponding term from your result. (The proof makes use of the so-called *Ward identity* of QED.)
- (g) Show that

$$\int \frac{d^4\ell}{(2\pi)^4} \frac{\ell^{\mu}\ell^{\nu}}{f(\ell^2)} = \frac{1}{4} \int \frac{d^4\ell}{(2\pi)^4} g^{\mu\nu} \frac{\ell^2}{f(\ell^2)}$$

- (h) Recall that $\ell^2 = (\ell^0)^2 (\ell^i)^2$. Therefore, the integral of eqn. (2) has to be performed in Minkowski Space. It is much more convenient to perform such integrals in 4-dim Euclidean space. To do so, one has to perform a Wick rotation:
 - i. View ℓ^0 as a complex variable. Draw the complex ℓ^0 -plane. The integration is along the real axis. Mark the positions of the poles of eqn. (2)
 - ii. Use Cauchy's integral theorem to argue that the integral from $-i\infty$ to $+i\infty$ is equal to the integral from $-\infty$ to $+\infty$.
 - iii. So we define new (euclidean) coordinates: $l^0 = in^0$ and $l^i = n^i$ and rewrite the integral in terms of n^{μ} . At the end, rename n^{μ} to ℓ^{μ} .
 - iv. Now we can set $\epsilon \to 0$, because there is no divergence on the path of integration.

The result should read:

$$i\Pi^{\mu\nu}(q) = -4ie^2 \int \frac{d^4\ell}{(2\pi)^4} \int_0^1 dx \frac{\frac{1}{2}g^{\mu\nu}\ell^2 + g^{\mu\nu}x(1-x)q^2 + g^{\mu\nu}m^2}{(\ell^2 + \Delta)^2}$$
(3)