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1. Renormalization of the Electric Charge in QED - part 1

We calculate loop corrections to the photon propagator in QED due to the vacuum
polarization diagram. We will see that the correction can be interpreted as a renor-
malization effect on the electric charge, the QED coupling constant. The vacuum
polarization diagram is given by the (amputated) Feynman diagram
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(a) Write down the matrix element iII#(q) for this process. Use the QED Feynman
rules from Ex.6.2 plus the additional Feynman rules:

Propagator of fermions with momentum ¢ iqgf%
Loop momentum k i %’)ﬂ
Fermion loop (—1)

You will find
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(Hint: The trace comes from the contraction of the spinor indices of the ~-
matrices. i€ is added by hand to avoid an infinity when k? = m? or (k+q)? = m?.)

(b) Use the trace theorems for v matrices from Ex.2.3 to simplify the numerator of
eqn. (1). (Note that the denominator is a scalar with respect to the trace.) The
result is
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(c) Prove the so-called Feynman trick:
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Hint: Solve the integral by variable substitution y = (a — b)z + b.

(d) Use the Feynman trick to combine the two denominators of eqn. (1). The result

reads
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where ¢ = k + xq.

(e) Shift the integration variable from an integration over k to an integration over
¢ and argue that you can drop all terms linear in ¢. The result is:
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where A = m* — z(1 — x)g°.
(f) In QED one can prove that, due to the gauge symmetry, all terms proportional
to g* or ¢” vanish in every S-matrix calculation. Drop the corresponding term

from your result. (The proof makes use of the so-called Ward identity of QED.)

(g) Show that
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(h) Recall that ¢ = (%) — (¢")%. Therefore, the integral of eqn. (2) has to be
performed in Minkowski Space. It is much more convenient to perform such
integrals in 4-dim Euclidean space. To do so, one has to perform a Wick rotation:

i. View ¢° as a complex variable. Draw the complex ¢°-plane. The integration
is along the real axis. Mark the positions of the poles of eqn. (2)

ii. Use Cauchy’s integral theorem to argue that the integral from —ioco to +ioo
is equal to the integral from —oo to +ooc.

iii. So we define new (euclidean) coordinates: [° = in® and ' = n’ and rewrite
the integral in terms of n*. At the end, rename n* to ¢*.

iv. Now we can set ¢ — 0, because there is no divergence on the path of
integration.

The result should read:
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